赞
踩
好吧,搞了半天,都是围绕数据在干活,这也就验证了,我们说的,数据准备等工作,要占到机器学习项目一半以上的工作量和时间。而且数据决定了模型的天花板,算法只是去达到上限。
我们今天来学习模型训练!
首先,我们来进行线性回归训练,如上图。
当训练到loss小于0.0001时停止,如右图,此时训练结合与验证集标注之间的MSE=22.073。
那么我们来解释下,什么是loss,什么是mse。
loss,损失函数、误差函数,即用1个标量来标示的训练集标签与真实标签之间的差距。
那MSE呢?
MSE就是均方差,参数估计值与参数值之差平方的期望值。
延伸学习:
在机器学习项目中,模型训练是至关重要的一环,它涉及使用已知数据(训练集)来训练算法,以便模型能够学习数据的内在规律和模式,进而对未知数据(测试集)进行准确预测。下面将系统阐述模型训练的过程、关键技术、步骤以及损失函数(如loss和均方误差MSE)的应用和重要作用。
数据准备:这是模型训练的第一步,包括数据收集、清洗、预处理和特征工程。数据质量对模型性能有直接影响,因此确保数据准确、完整、一致和具有代表性至关重要。特征工程涉及从原始数据中提取和构造有意义的特征,以便模型能够更好地理解数据。
选择模型:根据问题的性质和数据的特征选择合适的机器学习算法。例如,对于分类问题可以选择决策树、随机森林、支持向量机等算法;对于回归问题可以选择线性回归、神经网络等算法。
训练模型:使用训练数据和选择的算法来训练模型。在这个过程中,算法会通过迭代优化来学习数据的特征和模式。通常,模型训练需要设置一些超参数,如学习率、迭代次数等,这些参数会影响模型的训练速度和性能。
评估模型:使用验证集或测试集来评估模型的性能。评估指标根据问题的不同而有所不同,如分类问题中常用的准确率、召回率、F1分数等;回归问题中常用的均方误差(MSE)、平均绝对误差(MAE)等。
模型调优:根据评估结果对模型进行调优,包括调整超参数、改变模型结构或采用其他优化策略。调优的目标是提高模型在未知数据上的泛化能力。
部署与应用:将训练好的模型部署到生产环境中,以便对实际数据进行预测和分析。在部署过程中需要考虑模型的实时性、稳定性、可解释性等因素。
梯度下降算法:梯度下降是机器学习中最常用的优化算法之一,用于最小化损失函数。它通过计算损失函数关于模型参数的梯度,并按照负梯度方向更新参数,从而逐步降低损失函数的值。梯度下降有多种变体,如批量梯度下降、随机梯度下降和小批量梯度下降等。
正则化技术:正则化是一种用于防止模型过拟合的技术。通过在损失函数中添加正则化项(如L1正则化、L2正则化等),可以约束模型参数的规模,从而降低模型的复杂度,提高其在未知数据上的泛化能力。
集成学习:集成学习是一种通过组合多个弱学习器来构建一个强学习器的技术。常见的集成学习方法包括袋装(Bagging)、提升(Boosting)和堆叠(Stacking)等。这些方法可以有效地提高模型的性能,并降低过拟合的风险。
深度学习:深度学习是机器学习的一个分支,它利用神经网络模型来处理大规模、高维度的数据。深度学习模型通常由多层神经元组成,每一层都从前一层学习并提取更高级别的特征表示。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著成果。
损失函数(Loss Function)在机器学习模型训练中起着至关重要的作用。它用于量化模型预测与真实值之间的差异,从而指导模型的优化方向。均方误差(Mean Squared Error, MSE)是回归问题中常用的损失函数之一。
MSE的定义:对于给定的样本集(D = {(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)}),其中(x_i)是输入特征,(y_i)是对应的真实值。模型对(x_i)的预测值为(\hat{y}_i)。均方误差MSE定义为:
[MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2]
MSE衡量了模型预测值与真实值之间的平均平方误差,值越小表示模型的预测越准确。
MSE的应用:在模型训练过程中,优化算法会不断调整模型参数以最小化MSE。通过计算损失函数关于模型参数的梯度,并使用梯度下降等优化算法进行参数更新,可以逐步降低MSE的值,从而提高模型的预测精度。
MSE的重要作用:
指导模型优化:MSE为模型提供了一个明确的优化目标。通过最小化MSE,模型可以学习到数据的内在规律和模式,从而对未知数据进行准确预测。
评估模型性能:除了用于模型训练外,MSE还可以用于评估模型的性能。通过计算测试集上的MSE值,我们可以了解模型在未知数据上的预测精度和泛化能力。
比较不同模型:使用相同的损失函数(如MSE)可以方便地比较不同模型的性能。具有较低MSE值的模型通常具有更好的预测性能。
发现过拟合与欠拟合:观察训练集和验证集上的MSE变化可以帮助我们发现模型的过拟合与欠拟合问题。如果训练集上的MSE持续降低而验证集上的MSE开始上升,则可能出现了过拟合;如果两者都保持较高水平且下降缓慢,则可能出现了欠拟合。针对这些问题,我们可以采取相应的措施进行调整和优化。
选择模型时,有分类问题,有回归问题,都有不同的算法。
在机器学习中,除了分类问题和回归问题,还有其他几种基本的问题类型,这些问题类型在解决实际问题时也非常常见。下面列举了与分类和回归同级别的几种机器学习问题类型,并分别给出了适合解决的实际问题示例:
回归问题(Regression)
分类问题(Classification)
需要注意的是,分类问题和回归问题在实际应用中经常相互交织。例如,在某些情况下,可以将多分类问题转换为多个二元分类问题来处理;同样地,在某些场景中,连续值的预测也可以转换为离散类别的预测。因此,在选择合适的问题类型和算法时,需要仔细分析具体的应用场景和数据特征。
每种问题类型都有其特定的应用场景和算法,选择合适的问题类型和算法是解决机器学习问题的关键步骤之一。
所以说,本案例中的价格预测,就是回归问题,就要用线性回归算法来解决。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。