赞
踩
边缘类型:简单分为4中类型,阶跃型、屋脊型、斜坡型、脉冲型,其中阶跃型和斜坡型是类似的,只是变化的快慢不同。
边缘检测算子:
步骤:
""" cv2.Canny(image, # 输入原图(必须为单通道图) threshold1, threshold2, # 较大的阈值2用于检测图像中明显的边缘 [, edges[, apertureSize[, # apertureSize:Sobel算子的大小 L2gradient ]]]) # 参数(布尔值): true: 使用更精确的L2范数进行计算(即两个方向的倒数的平方和再开放), false:使用L1范数(直接将两个方向导数的绝对值相加)。 """ import cv2 import numpy as np original_img = cv2.imread("qingwen.png", 0) # canny(): 边缘检测 img1 = cv2.GaussianBlur(original_img,(3,3),0) canny = cv2.Canny(img1, 50, 150) # 形态学:边缘检测 _,Thr_img = cv2.threshold(original_img,210,255,cv2.THRESH_BINARY)#设定红色通道阈值210(阈值影响梯度运算效果) kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5)) #定义矩形结构元素 gradient = cv2.morphologyEx(Thr_img, cv2.MORPH_GRADIENT, kernel) #梯度 cv2.imshow("original_img", original_img) cv2.imshow("gradient", gradient) cv2.imshow('Canny', canny) cv2.waitKey(0) cv2.destroyAllWindows()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
可调整阈值大小的程序
import cv2 import numpy as np def CannyThreshold(lowThreshold): detected_edges = cv2.GaussianBlur(gray,(3,3),0) detected_edges = cv2.Canny(detected_edges, lowThreshold, lowThreshold*ratio, apertureSize = kernel_size) dst = cv2.bitwise_and(img,img,mask = detected_edges) # just add some colours to edges from original image. cv2.imshow('canny demo',dst) lowThreshold = 0 max_lowThreshold = 100 ratio = 3 kernel_size = 3 img = cv2.imread('qingwen.png') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) cv2.namedWindow('canny demo') cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold) CannyThreshold(0) # initialization if cv2.waitKey(0) == 27: cv2.destroyAllWindows()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。