当前位置:   article > 正文

OpenCV—python 边缘检测(Canny)_canny边缘检测算法python

canny边缘检测算法python

一、边缘定义及类型

边缘类型:简单分为4中类型,阶跃型、屋脊型、斜坡型、脉冲型,其中阶跃型和斜坡型是类似的,只是变化的快慢不同。
在这里插入图片描述

二、边缘检测算子类别

边缘检测算子:

三、OpenCV-Python 中 Canny() 参数

步骤:

  • 彩色图像转换为灰度图像(以灰度图或者单通道图读入)
  • 对图像进行高斯模糊(去噪)
  • 计算图像梯度,根据梯度计算图像边缘幅值与角度
  • 沿梯度方向进行非极大值抑制(边缘细化)
  • 双阈值边缘连接处理
  • 二值化图像输出结果
"""
cv2.Canny(image,            # 输入原图(必须为单通道图)
          threshold1, 
          threshold2,       # 较大的阈值2用于检测图像中明显的边缘
          [, edges[, 
          apertureSize[,    # apertureSize:Sobel算子的大小
          L2gradient ]]])   # 参数(布尔值):
                              true: 使用更精确的L2范数进行计算(即两个方向的倒数的平方和再开放),
                              false:使用L1范数(直接将两个方向导数的绝对值相加)。
"""

import cv2
import numpy as np  
 
original_img = cv2.imread("qingwen.png", 0)

# canny(): 边缘检测
img1 = cv2.GaussianBlur(original_img,(3,3),0)
canny = cv2.Canny(img1, 50, 150)

# 形态学:边缘检测
_,Thr_img = cv2.threshold(original_img,210,255,cv2.THRESH_BINARY)#设定红色通道阈值210(阈值影响梯度运算效果)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(5,5))         #定义矩形结构元素
gradient = cv2.morphologyEx(Thr_img, cv2.MORPH_GRADIENT, kernel) #梯度

cv2.imshow("original_img", original_img) 
cv2.imshow("gradient", gradient) 
cv2.imshow('Canny', canny)

cv2.waitKey(0)
cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

在这里插入图片描述
可调整阈值大小的程序

import cv2
import numpy as np
 
def CannyThreshold(lowThreshold):
    detected_edges = cv2.GaussianBlur(gray,(3,3),0)
    detected_edges = cv2.Canny(detected_edges,
                               lowThreshold,
                               lowThreshold*ratio,
                               apertureSize = kernel_size)
    dst = cv2.bitwise_and(img,img,mask = detected_edges)  # just add some colours to edges from original image.
    cv2.imshow('canny demo',dst)

lowThreshold = 0
max_lowThreshold = 100
ratio = 3
kernel_size = 3
 
img = cv2.imread('qingwen.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
 
cv2.namedWindow('canny demo')
 
cv2.createTrackbar('Min threshold','canny demo',lowThreshold, max_lowThreshold, CannyThreshold)
 
CannyThreshold(0)  # initialization
if cv2.waitKey(0) == 27:
    cv2.destroyAllWindows()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/173417
推荐阅读
相关标签
  

闽ICP备14008679号