赞
踩
自 2017 年发表“ Attention Is All You Need ”论文以来,Transformer 架构一直是自然语言处理 (NLP) 领域的基石。它的设计多年来基本没有变化,随着旋转位置编码 (RoPE) 的引入,2022年标志着该领域的重大发展。
旋转位置嵌入是最先进的 NLP 位置嵌入技术。大多数流行的大型语言模型(如 Llama、Llama2、PaLM 和 CodeGen)已经在使用它。在本文中,我们将深入探讨什么是旋转位置编码,以及它们如何巧妙地融合绝对位置嵌入和相对位置嵌入的优点。
为了理解 RoPE 的重要性,我们首先回顾一下为什么位置编码至关重要。Transformer 模型根据其固有的设计,不会考虑输入标记的顺序。
例如,像“the dog chases the pig ”和“the pig chases the dogs”这样的短语虽然含义不同,但由于它们被视为一组无序的标记,因此被视为无法区分。为了维护序列信息及其含义,需要一个表示来将位置信息集成到模型中。
在句子的上下文中,假设我们有一个代表一个单词的嵌入。为了对其位置进行编码,需要使用另一个具有相同维度的向量,其中每个向量唯一地代表句子中的一个位置。例如,为句子中的第二个单词指定特定向量。所以每个句子位置都有其独特的向量。然后通过将词嵌入与其相应的位置嵌入求和来形成 Transformer 层的输入。
有两种主要方法来生成这些嵌入:
绝对位置编码的局限性
尽管使用广泛但绝对位置嵌入也并非没有缺点:
相对位置位置不是关注标记在句子中的绝对位置,而是关注标记对之间的距离。该方法不会直接向词向量添加位置向量。而是改变了注意力机制以纳入相对位置信息。
最经典得案例就是T5(Text-to-Text Transfer Transformer)是一种利用相对位置嵌入的著名模型。T5 引入了一种处理位置信息的微妙方式:
相对位置编码的局限性
尽管它们在理论上很有吸引力,但相对位置编码得问题很严重
由于这些工程复杂性,位置编码未得到广泛采用,特别是在较大的语言模型中。
RoPE 代表了一种编码位置信息的新方法。传统方法中无论是绝对方法还是相对方法,都有其局限性。绝对位置编码为每个位置分配一个唯一的向量,虽然简单但不能很好地扩展并且无法有效捕获相对位置;相对位置编码关注标记之间的距离,增强模型对标记关系的理解,但使模型架构复杂化。
RoPE巧妙地结合了两者的优点。允许模型理解标记的绝对位置及其相对距离的方式对位置信息进行编码。这是通过旋转机制实现的,其中序列中的每个位置都由嵌入空间中的旋转表示。RoPE 的优雅之处在于其简单性和高效性,这使得模型能够更好地掌握语言语法和语义的细微差别。
旋转矩阵源自我们在高中学到的正弦和余弦的三角性质,使用二维矩阵应该足以获得旋转矩阵的理论,如下所示!
我们看到旋转矩阵保留了原始向量的大小(或长度),如上图中的“r”所示,唯一改变的是与x轴的角度。
RoPE 引入了一个新颖的概念。它不是添加位置向量,而是对词向量应用旋转。旋转角度 (θ) 与单词在句子中的位置成正比。第一个位置的向量旋转 θ,第二个位置的向量旋转 2θ,依此类推。这种方法有几个好处:
RoPE 的矩阵公式
RoPE的技术实现涉及到旋转矩阵。在 2D 情况下,论文中的方程包含一个旋转矩阵,该旋转矩阵将向量旋转 Mθ 角度,其中 M 是句子中的绝对位置。这种旋转应用于 Transformer 自注意力机制中的查询向量和键向量。
对于更高维度,向量被分成 2D 块,并且每对独立旋转。这可以被想象成一个在空间中旋转的 n 维。听着这个方法好好像实现是复杂,其实不然,这在 PyTorch 等库中只需要大约十行代码就可以高效的实现。
importtorch importtorch.nnasnn classRotaryPositionalEmbedding(nn.Module): def__init__(self, d_model, max_seq_len): super(RotaryPositionalEmbedding, self).__init__() # Create a rotation matrix. self.rotation_matrix=torch.zeros(d_model, d_model, device=torch.device("cuda")) foriinrange(d_model): forjinrange(d_model): self.rotation_matrix[i, j] =torch.cos(i*j*0.01) # Create a positional embedding matrix. self.positional_embedding=torch.zeros(max_seq_len, d_model, device=torch.device("cuda")) foriinrange(max_seq_len): forjinrange(d_model): self.positional_embedding[i, j] =torch.cos(i*j*0.01) defforward(self, x): """ Args: x: A tensor of shape (batch_size, seq_len, d_model). Returns: A tensor of shape (batch_size, seq_len, d_model). """ # Add the positional embedding to the input tensor. x+=self.positional_embedding # Apply the rotation matrix to the input tensor. x=torch.matmul(x, self.rotation_matrix) returnx
为了旋转是通过简单的向量运算而不是矩阵乘法来执行。距离较近的单词更有可能具有较高的点积,而距离较远的单词则具有较低的点积,这反映了它们在给定上下文中的相对相关性。
使用 RoPE 对 RoBERTa 和 Performer 等模型进行的实验表明,与正弦嵌入相比,它的训练时间更快。并且该方法在各种架构和训练设置中都很稳健。
最主要的是RoPE是可以外推的,也就是说可以直接处理任意长的问题。在最早的llamacpp项目中就有人通过线性插值RoPE扩张,在推理的时候直接通过线性插值将LLAMA的context由2k拓展到4k,并且性能没有下降,所以这也可以证明RoPE的有效性。
代码如下:
import transformers
old_init = transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__
def ntk_scaled_init(self, dim, max_position_embeddings=2048, base=10000, device=None):
#The method is just these three lines
max_position_embeddings = 16384
a = 8 #Alpha value
base = base * a ** (dim / (dim-2)) #Base change formula
old_init(self, dim, max_position_embeddings, base, device)
transformers.models.llama.modeling_llama.LlamaRotaryEmbedding.__init__ = ntk_scaled_init
旋转位置嵌入代表了 Transformer 架构的范式转变,提供了一种更稳健、直观和可扩展的位置信息编码方式。
RoPE不仅解决了LLM context过长之后引起的上下文无法关联问题,并且还提高了训练和推理的速度。这一进步不仅增强了当前的语言模型,还为 NLP 的未来创新奠定了基础。随着我们不断解开语言和人工智能的复杂性,像 RoPE 这样的方法将有助于构建更先进、更准确、更类人的语言处理系统。
https://avoid.overfit.cn/post/9e0d8e7687a94d1ead9aeea65bb2a129
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。