当前位置:   article > 正文

Bert模型介绍及代码解析(pytorch)_bert代码

bert代码

Bert(预训练模型)

动机

  • 基于微调的NLP模型
  • 预训练的模型抽取了足够多的信息
  • 新的任务只需要增加一个简单的输出层

注:bert相当于只有编码器的transformer

基于transformer的改进

  • 每个样本是一个句子对
  • 加入额外的片段嵌入
  • 位置编码可学习

在这里插入图片描述

< cls >为分类 < sep >用来分隔句子 有两个句子前一个id为0后一个id为1

BERT选择Transformer编码器作为其双向架构。在Transformer编码器中常见是,位置嵌入被加入到输入序列的每个位置。然而,与原始的Transformer编码器不同,BERT使用可学习的位置嵌入。上图表明BERT输入序列的嵌入是词元嵌入、片段嵌入和位置嵌入的和。

预训练任务1:带掩码的语言模型

1)transformer的编码器是双向的,标准语言模型要求单向

2)在这个预训练任务中,将随机选择15%的词元作为预测的掩蔽词元。要预测一个掩蔽词元而不使用标签作弊,一个简单的方法是总是用一个特殊的“”替换输入序列中的词元。

3)然而,人造特殊词元“”不会出现在微调中。为了避免预训练和微调之间的这种不匹配,如果为预测而屏蔽词元(例如,在“this movie is great”中选择掩蔽和预测“great”),则在输入中将其替换为:

  • 80%时间为特殊的““词元(例如,“this movie is great”变为“this movie is”;
  • 10%时间为随机词元(例如,“this movie is great”变为“this movie is drink”);
  • 10%时间内为不变的标签词元(例如,“this movie is great”变为“this movie is great”)
预训练任务1:下一个句子预测
  • 预测一个句子对中两个句子是否相邻

  • 训练样本中:

    • 50%的概率选择相邻句子对 (相当于正例)
    • 50%的概率选择随机句子对(相当于负例)
  • 将< cls >对应的输出放入一个全连接层来预测(这一对句子是否相邻)

模型实现

BERT输入序列明确地表示单个文本和文本对。当输入为单个文本时,BERT输入序列是特殊类别词元“”、文本序列的标记、以及特殊分隔词元“”的连结。当输入为文本对时,BERT输入序列是“”、第一个文本序列的标记、“”、第二个文本序列标记、以及“”的连结。

下面的get_tokens_and_segments将一个句子或两个句子作为输入,然后返回BERT输入序列的标记及其相应的片段索引。

import torch
from torch import nn
from d2l import torch as d2l

def get_tokens_and_segments(tokens_a, tokens_b=None):
    """获取输入序列的词元及其片段索引"""
    tokens = ['<cls>'] + tokens_a + ['<sep>']
    # 0和1分别标记片段A和B
    segments = [0] * (len(tokens_a) + 2)
    if tokens_b is not None:
        tokens += tokens_b + ['<sep>']
        segments += [1] * (len(tokens_b) + 1)
    return tokens, segments
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

BERTEncoder使用片段嵌入和可学习的位置嵌入:

class BERTEncoder(nn.Module):
    """BERT编码器"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 **kwargs):
        super(BERTEncoder, self).__init__(**kwargs)
        self.token_embedding = nn.Embedding(vocab_size, num_hiddens)
        self.segment_embedding = nn.Embedding(2, num_hiddens)
        self.blks = nn.Sequential()
#将transformer中的EncodeerBlosck照搬过来
        for i in range(num_layers):
            self.blks.add_module(f"{i}", d2l.EncoderBlock(
                key_size, query_size, value_size, num_hiddens, norm_shape,
                ffn_num_input, ffn_num_hiddens, num_heads, dropout, True))
        # 在BERT中,位置嵌入是可学习的,因此我们创建一个足够长的位置嵌入参数  随机初始化
        self.pos_embedding = nn.Parameter(torch.randn(1, max_len,
                                                      num_hiddens))

    def forward(self, tokens, segments, valid_lens):
        # 在以下代码段中,X的形状保持不变:(批量大小,最大序列长度,num_hiddens)
        X = self.token_embedding(tokens) + self.segment_embedding(segments)
        X = X + self.pos_embedding.data[:, :X.shape[1], :]
        for blk in self.blks:
            X = blk(X, valid_lens)
        return X
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

假设词表大小为10000,为了演示BERTEncoder的前向推断,让我们创建一个实例并初始化它的参数。

vocab_size, num_hiddens, ffn_num_hiddens, num_heads = 10000, 768, 1024, 4
norm_shape, ffn_num_input, num_layers, dropout = [768], 768, 2, 0.2
encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape, ffn_num_input,
                      ffn_num_hiddens, num_heads, num_layers, dropout)
  • 1
  • 2
  • 3
  • 4

tokens定义为长度为8的2个输入序列,其中每个词元是词表的索引。使用输入tokensBERTEncoder的前向推断返回编码结果,其中每个词元由向量表示,其长度由超参数num_hiddens定义。

tokens = torch.randint(0, vocab_size, (2, 8))
segments = torch.tensor([[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 1, 1]])
encoded_X = encoder(tokens, segments, None)
encoded_X.shape
  • 1
  • 2
  • 3
  • 4

任务1.掩码的语言模型:

我们实现了下面的MaskLM类来预测BERT预训练的掩蔽语言模型任务中的掩蔽标记。预测使用单隐藏层的多层感知机(self.mlp)。在前向推断中,它需要两个输入:BERTEncoder的编码结果和用于预测的词元位置。输出是这些位置的预测结果。

class MaskLM(nn.Module):
    """BERT的掩蔽语言模型任务"""
    def __init__(self, vocab_size, num_hiddens, num_inputs=768, **kwargs):
        super(MaskLM, self).__init__(**kwargs)
        self.mlp = nn.Sequential(nn.Linear(num_inputs, num_hiddens),
                                 nn.ReLU(),
                                 nn.LayerNorm(num_hiddens),
                                 nn.Linear(num_hiddens, vocab_size))

    def forward(self, X, pred_positions):
        num_pred_positions = pred_positions.shape[1]
        pred_positions = pred_positions.reshape(-1)
        batch_size = X.shape[0]
        batch_idx = torch.arange(0, batch_size)
        # 假设batch_size=2,num_pred_positions=3
        # 那么batch_idx是np.array([0,0,0,1,1])
        batch_idx = torch.repeat_interleave(batch_idx, num_pred_positions)
        masked_X = X[batch_idx, pred_positions]
        masked_X = masked_X.reshape((batch_size, num_pred_positions, -1))
        mlm_Y_hat = self.mlp(masked_X)
        return mlm_Y_hat
    
mlm = MaskLM(vocab_size, num_hiddens)
mlm_positions = torch.tensor([[1, 5, 2], [6, 1, 5]])
mlm_Y_hat = mlm(encoded_X, mlm_positions)
print(mlm_Y_hat.shape) #torch.Size([2, 3, 10000])

mlm_Y = torch.tensor([[7, 8, 9], [10, 20, 30]])
loss = nn.CrossEntropyLoss(reduction='none')
mlm_l = loss(mlm_Y_hat.reshape((-1, vocab_size)), mlm_Y.reshape(-1))
print(mlm_l.shape) #torch.Size([6])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31

任务2.预测下一句:

下面的NextSentencePred类使用单隐藏层的多层感知机来预测第二个句子是否是BERT输入序列中第一个句子的下一个句子。由于Transformer编码器中的自注意力,特殊词元“”的BERT表示已经对输入的两个句子进行了编码。因此,多层感知机分类器的输出层(self.output)以X作为输入,其中X是多层感知机隐藏层的输出,而MLP隐藏层的输入是编码后的“”词元。

class NextSentencePred(nn.Module):
    """BERT的下一句预测任务"""
    def __init__(self, num_inputs, **kwargs):
        super(NextSentencePred, self).__init__(**kwargs)
        self.output = nn.Linear(num_inputs, 2)

    def forward(self, X):
        # X的形状:(batchsize,num_hiddens)
        return self.output(X)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

将上述功能进行综合:

#@save
class BERTModel(nn.Module):
    """BERT模型"""
    def __init__(self, vocab_size, num_hiddens, norm_shape, ffn_num_input,
                 ffn_num_hiddens, num_heads, num_layers, dropout,
                 max_len=1000, key_size=768, query_size=768, value_size=768,
                 hid_in_features=768, mlm_in_features=768,
                 nsp_in_features=768):
        super(BERTModel, self).__init__()
        self.encoder = BERTEncoder(vocab_size, num_hiddens, norm_shape,
                    ffn_num_input, ffn_num_hiddens, num_heads, num_layers,
                    dropout, max_len=max_len, key_size=key_size,
                    query_size=query_size, value_size=value_size)
        self.hidden = nn.Sequential(nn.Linear(hid_in_features, num_hiddens),
                                    nn.Tanh())
        self.mlm = MaskLM(vocab_size, num_hiddens, mlm_in_features)
        self.nsp = NextSentencePred(nsp_in_features)

    def forward(self, tokens, segments, valid_lens=None,
                pred_positions=None):
        encoded_X = self.encoder(tokens, segments, valid_lens)
        if pred_positions is not None:
            mlm_Y_hat = self.mlm(encoded_X, pred_positions)
        else:
            mlm_Y_hat = None
        # 用于下一句预测的多层感知机分类器的隐藏层,0是“<cls>”标记的索引
        nsp_Y_hat = self.nsp(self.hidden(encoded_X[:, 0, :]))
        return encoded_X, mlm_Y_hat, nsp_Y_hat
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/376654
推荐阅读
相关标签
  

闽ICP备14008679号