赞
踩
目录
以上这段概念描述看起来十分复杂,晦涩难懂。那么堆用通俗语言简单描述如下:
堆是一个完全二叉树的顺序存储。在一个堆中,堆的父节点一定大于等于(或小于等于)子节点。一旦有一部分不满足则不为堆。
堆的性质:
1、堆中某个节点的值总是不大于或不小于其父节点的值;2、堆总是一棵完全二叉树
在一个堆中,父节点一定大于等于子节点的堆称为大堆。又称大根堆。
在一个堆中,父节点一定小于等于子节点的堆称为小堆。又称小根堆。(下图就是一个小堆)
习题练习:
- 1.下列关键字序列为堆的是:(A)
- A 100,60,70,50,32,65
- B 60,70,65,50,32,100
- C 65,100,70,32,50,60
- D 70,65,100,32,50,60
- E 32,50,100,70,65,60
- F 50,100,70,65,60,32
-
分析:选项A分析后为大堆,其他选项多多少少都存在错误。(画图分析如下)
在本篇文章中我们主要以小堆为例实现。
现实中我们通常把堆使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统 虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
其中堆中包括以下主要功能:
1.堆的初始化 2.堆销毁 3.堆打印 4.堆的插入元素 5.堆删除元素 6.判断堆是否为空 7.求堆中元素的个数 8.求堆顶元素
详细接口如下:
- //小堆
- //算法逻辑思想是二叉树,物理上操作的是数组中数据
- typedef int HPDataType;
- typedef struct Heap
- {
- HPDataType* a; //数组a
- size_t size; //下标
- size_t capacity; //容量
- }HP;
-
- void Swap(HPDataType* pa, HPDataType* pb);//交换函数
- void HeapInit(HP* php);//堆初始化
- void HeapDestory(HP* php);//堆销毁
- void HeapPrint(HP* php);//堆打印
-
- //插入x以后,仍然要保证堆是(大/小)堆
- void HeapPush(HP* php, HPDataType x);
-
- //删除堆顶的数据(最大/最小)
- void HeapPop(HP* php);
-
- bool HeapEmpty(HP* php); //判断是否为空
- size_t HeapSize(HP* php);//求元素个数
- HPDataType HeapTop(HP* php);//求堆顶元素
有了如上的接口,接下来我们实现各个接口。由于我们使用数组来实现堆,大多接口功能和顺序表的实现相同。相同的实现这里不再过多分析。
- void HeapInit(HP* php)
- {
- assert(php);
- php->a = NULL;
- php->size = php->capacity = 0;
-
- }
- void HeapDestory(HP* php)
- {
- assert(php);
- free(php->a);
- php->a = NULL;
- php->capacity = php->size = 0;
-
- }
- void HeapPrint(HP* php)
- {
- assert(php);
- for (size_t i = 0; i < php->size; ++i)
- {
- printf("%d ", php->a[i]);
- }
- printf("\n");
- }
堆的元素插入是堆的一大重点和难点。接下来我们对该功能进行分析和实现。
1、我们要向堆中插入元素,我们首先要判断数组是否空间已满,如果空间已满就要扩容。扩容后再将新元素插入数组尾部。此过程和顺序表相同。
2、由于插入新元素,我们要对该元素进行分析(此处以如下图小堆举例),分析插入元素是否会破坏堆结构,如果破坏了堆,我们就要对堆进行向上调整。
3、向上调整过程分析(过程步骤如下图):
a. 我们发现出入新元素10之后,10作为28(父节点)的子节点却比28小,这样就破坏了我们的堆结构,这样就不构成小堆。因此我们需要对该结构进行调整。
b.由于堆的物理结构是一个数组,所以我们可以通过数组下标的形式找到我们孩子节点的父节点。不难分析出parent = (child-1)/2.当我们找到父节点时,我们进行大小比较,如果子节点小于父节点,此时就要进行交换元素。再让子节点到父节点的位置,重新计算父节点。
c.持续循环比较,如果child等于0时,说明向上调整结束。因此循环的条件可写为child>0.
注:循环过程中一旦成堆,则跳出循环。
- //交换函数
- void Swap(HPDataType* pa, HPDataType* pb)
- {
- HPDataType tmp = *pa;
- *pa = *pb;
- *pb = tmp;
- }
-
-
- //向上调整
- void AdjustUp(HPDataType* a, size_t child)
- {
- size_t parent = (child - 1) / 2;
- while (child > 0)
- {
- if (a[child] < a[parent])
- {
- Swap(&a[child], &a[parent]);
- child = parent;
- parent = (child - 1) / 2;
- }
- else
- {
- break;
- }
- }
- }
-
-
- void HeapPush(HP* php, HPDataType x)
- {
- assert(php);
- //考虑是否扩容
- if (php->size == php->capacity)
- {
- size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
- HPDataType* tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);
- if (tmp == NULL)
- {
- printf("realloc failed\n");
- exit(-1);
- }
- php->a = tmp;
- php->capacity = newCapacity;
- }
- php->a[php->size] = x;
- ++php->size;
- //需要向上调整
- AdjustUp(php->a, php->size - 1);
- }
删除堆是删除堆顶的数据思路:将堆顶的数据跟最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
我们要删除堆是删除堆顶的数据,我们不能直接删除堆顶的数据。如果直接删除堆顶的数据,就会破坏堆结构,并且复原的复杂度较高。在这里我们介绍一种方法不仅解决了删除堆的问题,并且复杂度较低。
1、首先我们要将堆顶的数据跟最后一个数据交换,然后删除数组最后一个数据,再进行向下调整算法。
2、向下调整算法具体步骤(过程步骤如下图):
a.我们将堆顶元素和数组最后一个元素交换后,此时堆顶的元素是数组的最后一个元素,我们要进行向下调整。定义parent为堆顶元素,查找2个子节点中较小的一个节点作为孩子节点。由于堆是数组结构实现,我们可以首先找到左孩子节点child = 2*parent+1。让左孩子和右孩子进行比较,较小的作为child的最后值。
b.如果孩子小于父亲,则交换,并继续往下调整。让parent到child的位置,再重新计算孩子。
c.当孩子大于等于元素总个数时,循环结束。因此循环的条件可以写为child<size.
注:循环过程中一旦成堆,则跳出循环。
- void AdjustDown(HPDataType* a, size_t size, size_t root)
- {
- size_t parent = root;
- size_t child = parent * 2 + 1;//先拿到左孩子
- while (child < size)
- {
- // 1、选出左右孩子中小的那个
- if (child + 1 < size && a[child + 1] < a[child])
- {
- ++child;
- }
-
- // 2、如果孩子小于父亲,则交换,并继续往下调整
- if (a[child] < a[parent])
- {
- Swap(&a[child], &a[parent]);
- parent = child;
- child = parent * 2 + 1;
- }
- else
- {
- break;
- }
- }
- }
- void HeapPop(HP* php)
- {
- assert(php);
- assert(php->size > 0);
- Swap(&php->a[0], &php->a[php->size - 1]);
- --php->size;
- AdjustDown(php->a, php->size, 0);
- }
- bool HeapEmpty(HP* php)
- {
- assert(php);
- return php->size == 0;
- }
- size_t HeapSize(HP* php)
- {
- assert(php);
- return php->size;
- }
- HPDataType HeapTop(HP* php)
- {
- assert(php);
- assert(php->size > 0);
- return php->a[0];
- }
堆排序即利用堆的思想来进行排序,总共分为两个步骤:1. 建堆升序:建大堆降序:建小堆2. 利用堆删除思想来进行排序建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
假设此时我们需要对数组元素进行升序排序,我们就可以使用我们刚刚实现的小堆。
1、首先我们将数组的元素插入到堆中,根据向上调整,此时堆已经是小堆。
2、根据小堆的性质,堆顶的元素一定是该堆中最小的元素,因此我们取到堆顶的元素,再删除堆顶的元素让堆重新生成小堆。依次循环即可解决升序排序(降序排序只需将小堆改为大堆即可)。
- //堆排序
- void HeapSort(int* a, int size)
- {
- HP hp;
- HeapInit(&hp);
- for (int i = 0; i < size; ++i)
- {
- HeapPush(&hp, a[i]);
- }
- size_t j = 0;
- while (!HeapEmpty(&hp))
- {
- a[j] = HeapTop(&hp);
- j++;
- HeapPop(&hp);
- }
- HeapDestory(&hp);
- }
- int main()
- {
- // TestHeap();
-
- int a[] = { 4,2,1,3,5,7,9,8,6};
- HeapSort(a,sizeof(a)/sizeof(int));
- for (int i = 0; i < sizeof(a) / sizeof(int); ++i)
- {
- printf("%d ", a[i]);
- }
-
- return 0;
- }
2022_03_30 -- 堆/2022_03_30 -- 二叉树 · 李兴宇/数据结构 - 码云 - 开源中国 (gitee.com)
(本篇完)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。