赞
踩
人脸检测是计算机视觉中的一个重要方向,也是一个和人们生活息息相关的研究方向,因为人脸是人最重要的外貌特征。人脸检测技术的重要性主要体现在以下几个方面:
- 人脸识别与安全:人脸检测是人脸识别系统的一个关键部分,是系统实现的前提和基础。在安防监控中,通过人脸检测可以抓拍人脸并将结果上传,与嫌疑犯人脸进行比对,协助公安人员的执法工作。此外,企业还在为考勤系统实施人脸识别技术,以防止时间欺诈并提高员工进出办公室的安全性。
- 人机交互与自动化:人脸检测也可以用于人机交互和图像数据库管理,如数码相机使用人脸检测来自动对焦,以及智能业务系统及平台的研发等。
- 零售与支付:在零售行业,人脸检测被用来加速盗窃和欺诈调查,以及分析来自众多来源的镜头以识别感兴趣的个人。此外,预计未来几年零售领域将发生巨大变化,全球将推广刷脸支付,这也离不开人脸检测技术的应用。
总之,人脸检测技术在许多领域都有广泛的应用前景,它能够提高人们生活的便利性、安全性和自动化程度。随着技术的不断进步,人脸检测将在更多领域发挥重要作用。
本文介绍了基于深度学习yolov8的洋葱检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。
检测结果如下图:
yolov8官方文档:主页 - Ultralytics YOLOv8 文档
安装部分参考:官方安装教程
根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。
对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):
打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:
打开pytorch官网,选择CPU版本安装pytorch,如下图:
在命令行使用如下命令安装:
pip install ultralytics
WIDER FACE数据集是一个用于面部检测的大规模人脸数据集,由香港中文大学的研究团队创建。该数据集的特点和组成如下:
- 规模与内容:该数据集包含了32,203张图片和393,703个人脸实例,涵盖了广泛的场景、姿态和光照条件。
- 标注信息:每个实例都有精确的边界框标注和五个面部特征点标注,这为研究者提供了丰富的信息来进行面部检测和相关任务的研究。
- 挑战性:WIDER FACE数据集拥有一个挑战性高的评估基准,旨在评估面部检测算法在各种实际场景中的性能。
- 数据划分:该数据集以60个事件类别(如交通、节日、游行等)为基础进行划分,每个事件类别中随机选择40%的数据作为训练集,10%作为验证集,50%作为测试集。这种划分方式使得数据集更具实际应用价值。
- 难度级别:WIDER FACE数据集为每个子集(训练集、验证集和测试集)都提供了三个级别的检测难度:Easy、Medium和Hard。这有助于研究者了解他们的算法在不同难度级别上的表现。
总的来说,WIDER FACE数据集是一个丰富、多样且具有挑战性的面部检测数据集,为面部检测和相关任务的研究提供了有力的支持。
本文使用的数据集来自widerface数据集,包含12876张训练图片,3226个测试图片,部分图片如下所示:
为了使用yolov8进行训练,需要将数据集转为yolo格式,本文提供转换好的数据集连接:widerface-yolov8数据集
创建数据集配置文件widerface.yaml,内容如下(将path路径替换为自己的数据集路径):
- # Ultralytics YOLO 声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/136545推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。