当前位置:   article > 正文

周志华《Machine Learning》学习笔记(5)--决策树_机器学习决策树 周志华ppt

机器学习决策树 周志华ppt

上篇主要介绍和讨论了线性模型。首先从最简单的最小二乘法开始,讨论输入属性有一个和多个的情形,接着通过广义线性模型延伸开来,将预测连续值的回归问题转化为分类问题,从而引入了对数几率回归,最后线性判别分析LDA将样本点进行投影,多分类问题实质上通过划分的方法转化为多个二分类问题进行求解。本篇将讨论另一种被广泛使用的分类算法–决策树(Decision Tree)。

4、决策树

4.1 决策树基本概念

顾名思义,决策树是基于树结构来进行决策的,在网上看到一个例子十分有趣,放在这里正好合适。现想象一位捉急的母亲想要给自己的女娃介绍一个男朋友,于是有了下面的对话:


  女儿:多大年纪了?
  母亲:26。
  女儿:长的帅不帅?
  母亲:挺帅的。
  女儿:收入高不?
  母亲:不算很高,中等情况。
  女儿:是公务员不?
  母亲:是,在税务局上班呢。
  女儿:那好,我去见见。
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

这个女孩的挑剔过程就是一个典型的决策树,即相当于通过年龄、长相、收入和是否公务员将男童鞋分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么使用下图就能很好地表示女孩的决策逻辑(即一颗决策树)。

这里写图片描述

在上图的决策树中,决策过程的每一次判定都是对某一属性的“测试”,决策最终结论则对应最终的判定结果。一般一颗决策树包含:一个根节点、若干个内部节点和若干个叶子节点,易知:

* 每个非叶节点表示一个特征属性测试。
* 每个分支代表这个特征属性在某个值域上的输出。
* 每个叶子节点存放一个类别。
* 每个节点包含的样本集合通过属性测试被划分到子节点中,根节点包含样本全集。
  • 1
  • 2
  • 3
  • 4

4.2 决策树的构造

决策树的构造是一个递归的过程,有三种情形会导致递归返回:(1) 当前结点包含的样本全属于同一类别,这时直接将该节点标记为叶节点,并设为相应的类别;(2) 当前属性集为空,或是所有样本在所有属性上取值相同,无法划分ÿ

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/587930
推荐阅读
相关标签
  

闽ICP备14008679号