当前位置:   article > 正文

opencv学习二十二:分水岭算法_分水岭算法得到全黑图像

分水岭算法得到全黑图像

使用分水岭算法进行图像分割

       (一)获取灰度图像,二值化图像,进行形态学操作,消除噪点
  (二)在距离变换前加上一步操作:通过对上面形态学去噪点后的图像,进行膨胀操作,可以得到大部分都是背景的区域(原黑色不是我们需要的部分是背景)
  
  (三)使用距离变换distanceTransform获取确定的前景色
相关知识补充(重点)
  (四)在获取了背景区域和前景区域(其实前景区域是我们的种子,我们将从这里进行灌水,向四周涨水,但是这个需要在markers中表示)后,这两个区域中有未重合部分(注1)怎么办?首先确定这些区域(寻找种子)
   开始获取未知区域unknown(栅栏会创建在这一区域),为下一步获取种子做准备
   (五)获取了这些区域,我们可以获取种子,这是通过connectedComponents实现,获取masker标签,确定的前景区域会在其中显示为以1开始的数据,这就是我们的种子,会从这里开始漫水
  重点:
  (六)根据未知区域unknown在markers中设置栅栏,并将背景区域加入种子区域,一起漫水
  (七)根据种子开始漫水,让水漫起来找到最后的漫出点(栅栏边界),越过这个点后各个山谷中水开始合并。注意watershed会将找到的栅栏在markers中设置为-1
  (八)结果查看
  (九)全部代码
在这里插入图片描述在这里插入图片描述在这里插入图片描述
OpenCV学习(7) 分水岭算法(1)

OpenCV-Python教程:31.分水岭算法对图像进行分割
OpenCV—分水岭算法
(一)获取灰度图像,二值化图像,进行形态学操作,消除噪点

def watershed_demo(image):
    blur = cv.pyrMeanShiftFiltering(image,10,100)
    gray = cv.cvtColor(blur,cv.COLOR_BGR2GRAY)  #获取灰度图像
    ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)  #将图像转为黑色和白色部分
    cv.imshow("binary",binary)  #获取二值化图像
  • 1
  • 2
  • 3
  • 4
  • 5

在这里插入图片描述

#形态学操作,进一步消除图像中噪点
kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3))
mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  #iterations连续两次开操作,消除图像的噪点
  • 1
  • 2
  • 3

在这里插入图片描述(二)在距离变换前加上一步操作:通过对上面形态学去噪点后的图像,进行膨胀操作,可以得到大部分都是背景的区域(原黑色不是我们需要的部分是背景)

sure_bg = cv.dilate(mb,kernel,iterations=3) #3次膨胀,可以获取到大部分都是背景的区域
  • 1

在这里插入图片描述(三)使用距离变换distanceTransform获取确定的前景色
根据distanceTransform获取距离背景最小距离的结果(详细看下面相关知识补充)
根据distanceTransform操作的结果,设置一个阈值,使用threshold决定哪些区域是前景,这样得到正确结果的概率很高

    dist = cv.distanceTransform(mb,cv.DIST_L2,5)  #获取距离数据结果
    ret, sure_fg = cv.threshold(dist,dist.max()*0.6,255,cv.THRESH_BINARY)  #获取前景色
  • 1
  • 2

相关知识补充(重点)
(1)距离变换原理
图像识别中距离变换的原理及作用详解,并附用OpenCV中的distanceTransform实现距离变换的代码!
距离变换的处理图像通常都是二值图像,而二值图像其实就是把图像分为两部分,即背景和物体两部分,物体通常又称为前景目标!
通常我们把前景目标的灰度值设为255,即白色
背景的灰度值设为0,即黑色。
所以定义中的非零像素点即为前景目标,零像素点即为背景。
所以图像中前景目标中的像素点距离背景越远,那么距离就越大,如果我们用这个距离值替换像素值,那么新生成的图像中这个点越亮。
在这里插入图片描述
再通过设定合理的阈值对距离变换后的图像进行二值化处理,则可得到去除手指的图像(如下图“bidist”窗口图像所示),手掌重心即为该图像的几何中心。
在这里插入图片描述
(2)distanceTransform函数
主要用于计算非零像素到最近零像素点的最短距离。一般用于求解图像的骨骼
def distanceTransform(src, distanceType, maskSize, dst=None, dstType=None)
src:输入的图像,一般为二值图像
distanceType:所用的求解距离的类型,有CV_DIST_L1, CV_DIST_L2 , or CV_DIST_C
mask_size:距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。

(3)若是想骨骼显示(对我们的分水岭流程无影响),我们需要对distanceTransform返回的结果进行归一化处理,使用normalize
因为distanceTransform返回的图像数据是浮点数值,要想在浮点数表示的颜色空间中,数值范围必须是0-1.0,所以要将其中的数值进行归一化处理

(重点)在整数表示的颜色空间中,数值范围是0-255,但在浮点数表示的颜色空间中,数值范围是0-1.0,所以要把0-255归一化。
顺便补充:若是不做归一化处理,数值大于1的都会变为1.0处理

mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  #iterations连续两次开操作
    cv.imshow("mb", mb)  #这是我们形态学开操作过滤噪点后的图像,暂时可以看做源图像
    #距离变换
    dist = cv.distanceTransform(mb,cv.DIST_L2,5)  #这是我们获取的字段距离数值,对应每个像素都有,所以数组结构和图像数组一致
    cv.imshow("dist",dist)
    dist_output = cv.normalize(dist,0,1.0,cv.NORM_MINMAX)  #归一化的距离图像数组   cv.imshow("distinct-t",dist_output*50)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述发现了似乎distanceTransform返回的图像和源图像一样,似乎出错了
原因:因为distanceTransform返回的是浮点型色彩空间,而dist中存放的数距离0值的最小距离,大多是大于1.0的数值,
而上面提到浮点型色彩空间数值范围0-1.0,当数值大于1.0都会被设置为1.0,显示白色,所以和原来的二值化图像一致,
我们要想显示骨骼,必须先进行归一化处理

(四)在获取了背景区域和前景区域(其实前景区域是我们的种子,我们将从这里进行灌水,向四周涨水,但是这个需要在markers中表示)后,这两个区域中有未重合部分(注1)怎么办?首先确定这些区域(寻找种子)
注1:
这里是求取硬币偏白色,使用THRESH_BINARY,所以我们获取对象是白色区域,是获取未重合部分
若是我们求取树叶等偏黑,需要使用THRESH_BINARY_INV,此时我们获取的对象是黑色区域,就变为了获取重合部分了
在这里插入图片描述
开始获取未知区域unknown(栅栏会创建在这一区域),为下一步获取种子做准备
在这里插入图片描述(五)获取了这些区域,我们可以获取种子,这是通过connectedComponents实现,获取masker标签,确定的前景区域会在其中显示为以1开始的数据,这就是我们的种子,会从这里开始漫水
基于矩阵实现的Connected Components算法
利用connectedComponents求图中的连通图

重点:
现在知道了那些是背景那些是硬币(确定的前景区域)了。那我们就可以创建标签(一个与原图像大小相同,数据类型为 in32 的数组),并标记其中的区域了。对我们已经确定分类的区域(无论是前景还是背景)使用不同的正整数标记,对我们不确定的区域(unknown区域)使用 0 标记。我们可以使用函数 cv2.connectedComponents()来做这件事。它会把对标签进行操作,将背景标记为 0,其他的对象使用从 1 开始的正整数标记(其实这就是我们的种子,水漫时会从这里漫出)。然后将这个标签返回给我们markers
但是,我们知道如果背景标记为 0,那分水岭算法就会把它当成未知区域了。(我们要将未知区域标记为0,所以我们要将背景区域变为其他整数,例如+1)所以我们想使用不同的整数标记它们。而对不确定的区域(函数cv2.connectedComponents 输出的结果中使用 unknown 定义未知区域)标记为 0。

#获取mask
ret,markers = cv.connectedComponents(surface_fg) 
  • 1
  • 2

函数原型:
def connectedComponents(image, labels=None, connectivity=None, ltype=None)

参数:
参数image是需要进行连通域处理的二值图像,其他的这里用不到

返回值:
ret是连通域处理的边缘条数,是上面提到的确定区域(出去背景外的其他确定区域:就是前景),就是种子数,我们会从种子开始向外涨水
markers是我们创建的一个标签(一个与原图像大小相同,数据类型为 in32 的数组),其中包含有我们原图像的确认区域的数据(前景区域)

(六)根据未知区域unknown在markers中设置栅栏,并将背景区域加入种子区域,一起漫水
注意:

watershed漫水算法需要我们将栅栏区域设置为0,所以我们需要将markers中背景区域(原来为0,会干扰算法)设置为其他整数。
解决方法将markers整体加一  #此时种子区域不止我们原来的前景区域,有增加了一个背景区域,我们将从这些区域一起灌水

   markers = markers + 1
   markers[unknown==255] = 0
  • 1
  • 2

(七)根据种子开始漫水,让水漫起来找到最后的漫出点(栅栏边界),越过这个点后各个山谷中水开始合并。注意watershed会将找到的栅栏在markers中设置为-1

    markers = cv.watershed(image,markers=markers)  #获取栅栏
    image[markers==-1] = [0,0,255]  #根据栅栏,我们对原图像进行操作,对栅栏区域设置为红色
  • 1
  • 2

(八)结果查看
在这里插入图片描述
(九)全部代码

import cv2 as cv
import numpy as np

def watershed_demo(image):
    # remove noise if any
    print(src.shape)#图像维度(348, 500, 3)
    blur = cv.pyrMeanShiftFiltering(image,10,100)#均值偏移滤波去噪
    gray = cv.cvtColor(blur,cv.COLOR_BGR2GRAY)  #获取灰度图像

    ret,binary = cv.threshold(gray,0,255,cv.THRESH_BINARY|cv.THRESH_OTSU)
    #形态学操作,进一步消除图像中噪点
    kernel = cv.getStructuringElement(cv.MORPH_RECT,(3,3))#卷积核
    mb = cv.morphologyEx(binary,cv.MORPH_OPEN,kernel,iterations=2)  #iterations连续两次开操作
    sure_bg = cv.dilate(mb,kernel,iterations=3) #3次膨胀,可以获取到大部分都是背景的区域
    cv.imshow("sure_bg",sure_bg)
    #距离变换
    dist = cv.distanceTransform(mb,cv.DIST_L2,5)
    cv.imshow("dist",dist)
    dist_output = cv.normalize(dist,0,1.0,cv.NORM_MINMAX)
    # print(mb[150][120:140])
    # print(dist[150][120:140])
    # print(dist_output[150][120:140])
    cv.imshow("distinct-t",dist_output*50)
    ret, sure_fg = cv.threshold(dist,dist.max()*0.6,255,cv.THRESH_BINARY)
    cv.imshow("sure_fg",sure_fg)
    # print(sure_fg[150][120:140])
    # print(sure_bg[150][120:140])
    #获取未知区域
    surface_fg = np.uint8(sure_fg)  #保持色彩空间一致才能进行运算,现在是背景空间为整型空间,前景为浮点型空间,所以进行转换
    unknown = cv.subtract(sure_bg,surface_fg)#种子区域除外的区域=膨胀结果-种子
    cv.imshow("unkown",unknown)
    #获取maskers,在markers中含有种子区域
    ret,markers = cv.connectedComponents(surface_fg)
    #print(ret)

    #分水岭变换
    markers = markers + 1
    markers[unknown==255] = 0

    markers = cv.watershed(image,markers=markers)
    image[markers==-1] = [0,0,255]

    cv.imshow("result",image)

src = cv.imread("C:/Users/lenovo/Desktop/opencv/daima/banknum/template-matching-ocr/images/yingbi.png")  #读取图片位置
cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)
cv.imshow("input image",src)    #通过名字将图像和窗口联系

watershed_demo(src)

cv.waitKey(0)   #等待用户操作,里面等待参数是毫秒,我们填写0,代表是永远,等待用户操作
cv.destroyAllWindows()  #销毁所有窗口
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

运行截图:
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/77490
推荐阅读
相关标签
  

闽ICP备14008679号