当前位置:   article > 正文

基于深度学习的实战项目1000个_基于深度学习的项目

基于深度学习的项目

​​demo仓库和视频演示:

视频传送门

 

卷积网路CNN分类的模型一般使用包括alexnet、DenseNet、DLA、GoogleNet、Mobilenet、ResNet、ResNeXt、ShuffleNet、VGG、EfficientNet和Swin transformer等10多种模型
目标检测一般是yolov3、yolov4、yolov5、yolox、PSPnet、faster_rcnn、SDD等
图像分割一般是Unet、mask-rcnn、PSPnet、yolov5-segment等

001手写汉字识别-单个汉字识别-pyqt可视化交互界面-python代码

002unet墙体瑕疵检测-python-pytorch

003水果识别小程序-python-pytorch-mobilenet

004基于python的hog+svm实现目标检测

005yolov5_deepsort目标跟踪行人统计数量

006人流目标跟踪pyqt界面_v5_deepsort

007CycleGAN_风格迁移+qt界面

008yolov4口罩目标检测识别

009中草药识别小程序

010基于vgg的CT_COVID与CT_NonCOVID二分类识别

011汉字识别crnn_qt界面

012yolov3口罩识别检测_是否佩戴规范检测_qt界面

013yolov3交通牌检测_CCTSDB数据集检测

014人脸识别打卡签到系统pyq

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/85255
推荐阅读
相关标签
  

闽ICP备14008679号