当前位置:   article > 正文

Flink Catalog 解读与同步 Hudi 表元数据的最佳实践

Flink Catalog 解读与同步 Hudi 表元数据的最佳实践
《大数据平台架构与原型实现:数据中台建设实战》博主历时三年精心创作的《大数据平台架构与原型实现:数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行,点击《重磅推荐:建大数据平台太难了!给我发个工程原型吧!》了解图书详情,京东购书链接:https://item.jd.com/12677623.html,扫描左侧二维码进入京东手机购书页面。

在当前的大数据格局中,Spark / Hive / Flink 是最为主流的 ETL 或 Streaming 引擎,元数据方面,Hive Metastore 可以视为事实上的 Data Catalog 标准,而在数据湖存储格式上,又有 Hudi、Iceberg 这类新晋的框架,在这种复杂的格局下,用户希望能它们之间能相互打通,以便能根据应用场景灵活地选择技术栈,同时又不会出现技术上的“隔离”,一个非常典型的例子是:当我们选择了 Hudi 作为数据湖的统一存储格式后,我们希望不管是 Flink 还是 Spark (也包括 Hive)都能顺利读写 Hudi 表,这也暗含着“元数据最好统一存储在 Hive Metastore 中”这样的诉求,这非常普遍且典型的一种用户诉求,而我们这篇文章其实就是针对这个诉求给出解决方案。

1. Flink Catalog 的整体设计和各类具体实现


首先,我们要清楚地明白一点:Flink 是有自己的、完全独立的 Catalog 定义(接口)的,就像 Hive 设计并使用了自己的 Hive MetaStore 一样。Flink 在自已统一的 Catalog 定义(接口)下,提供了多种不同的实现,其实本质的差别主要是存储介质上的差异:

推荐阅读
相关标签