赞
踩
通过生成对抗学习和设计的多尺度注意力模块,使得ReID网络获得更好的判别性能。其中生成对抗部分并未特别了解,网络结构部分的多尺度设计等适合参考。
本文工作主要包括三部分内容:
网络整体结构如图,其中Hard Negative Generator 和Embedding Dsicriminator都仅应用在训练过程,实际推理的过程中只有HFE网络在工作。
将Backbone的不同尺度特征图分别输入Multi-scale Attention模块,获得128维特征向量,最后对不同的embeddings进行池化操作,得到一个embeddings作为global feature。另外不同的embeddings通过不同的FC层后池化,得到另外两种特征(颜色、车型)。
Multi-scale Attention结构如图所示,其中主要的两处设计为Dilated Conv和Channel Attention。
Dilated Conv: 考虑到有些局部特征可能会分散在不同位置,标准卷积的感受野不足以学习,而Dilated卷积能够在不增加计算量的同时,指数级扩大感受野,从而学到那些离散的特征。
Channel Attention: 为了获得强特征的位置,对通道进行Global Average Pooling+tanh操作,获得的attention map于融合的特征图相乘,依次来强化特征,随后将特征flatten后通过FC得到128维embeddings。
采用对抗学习的方法生成Hard Negative样本,从而提高网络性能。另外通过对抗判别器进行训练。对此部分感兴趣可以参考
除了生成feature embedding,会额外用FC层处理不同embeddings后输入pooling来表示目标的颜色、型号信息。通过这些属性可以粗筛掉大部分目标,从而提高retrive表现。
通过消融实验发现,在SA模块中使用Dilated Conv时,当引入大于7*7尺寸的Conv时效果不降反升,原文对此有两种解释:
- majority of distinguishing features being covered with a receptive field of 7x7
- increased receptive field may result in accumulation of unnecessary features
本文中我主要的关注点还是在于ReID网络部分的设计。对于目标对尺度变化问题,本文对通过不同Feature map进行学习、采用不同尺寸的Dilated 卷积进行学习并利用Attention强化特征区域的设计值得借鉴。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。