当前位置:   article > 正文

Spark大数据处理讲课笔记4.1 Spark SQL概述、数据帧与数据集

spark大数据处理讲课笔记4.1

文章目录

零、本讲学习目标

  1. 了解Spark SQL的基本概念
  2. 掌握DataFrame的基本概念
  3. 掌握Dataset的基本概念
  4. 会基于DataFrame执行SQL查询

在很多情况下,开发工程师并不了解Scala语言,也不了解Spark常用API,但又非常想要使用Spark框架提供的强大的数据分析能力。Spark的开发工程师们考虑到了这个问题,利用SQL语言的语法简洁、学习门槛低以及在编程语言普及程度和流行程度高等诸多优势,从而开发了Spark SQL模块,通过Spark SQL,开发人员能够通过使用SQL语句,实现对结构化数据的处理。

一、Spark SQL

(一)Spark SQL概述

  • Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象结构叫做DataFrame的数据模型(即带有Schema信息的RDD),Spark SQL作为分布式SQL查询引擎,让用户可以通过SQL、DataFrames API和Datasets API三种方式实现对结构化数据的处理。

(二)Spark SQL功能

  • Spark SQL可从各种结构化数据源中读取数据,进行数据分析。
  • Spark SQL包含行业标准的JDBC和ODBC连接方式,因此它不局限于在Spark程序内使用SQL语句进行查询。
  • Spark SQL可以无缝地将SQL查询与Spark程序进行结合,它能
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/693331
推荐阅读
相关标签
  

闽ICP备14008679号