当前位置:   article > 正文

时间序列常用模型

时间序列模型有哪些

1、自回归模型(英语:Autoregressive model,简称AR模型),是统计上一种处理时间序列的方法。

         或者也可为  

其中: c是常数项;  被假设为平均数等于0,标准差等于  的随机误差值; 被假设为对于任何的t都不变。

文字叙述为:X的当期值等于一个或数个落后期的线性组合,加常数项,加随机误差。

2、MA(Moving Average Model)移动平均模型
通过将一段时间序列中白噪声序列进行加权和,可以得到移动平均方程。如下图所示为q阶移动平均过程,表示为MA(q)。theta表示移动回归系数。ut表示不同时间点的白噪声。

 

3、ARMA(Auto Regressive and Moving Average Model)自回归移动平均模型
自回归移动平均模型是与自回归和移动平均模型两部分组成。所以可以表示为ARMA(p, q)。p是自回归阶数,q是移动平均阶数。

 

从式子中就可以看出,自回归模型结合了两个模型的特点,其中,AR可以解决当前数据与后期数据之间的关系,MA则可以解决随机变动也就是噪声的问题。
https://blog.csdn.net/frankiehello/article/details/80883147

转载于:https://www.cnblogs.com/bawu/p/10868626.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Gausst松鼠会/article/detail/705007
推荐阅读
相关标签
  

闽ICP备14008679号