当前位置:   article > 正文

《统计学习方法(李航)》讲义 第03章 k近邻法

第03讲-k-近邻.pdf

      k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法。本书只讨论分类问题中的k近邻法。k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k近邻法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其k个最近邻的训练实例的类别,通过多数表决等方式进行预测.因此,k近邻法不具有显式的学习过程。k近邻法实际上利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”。k值的选择、距离度量及分类决策规则是k近邻法的三个基本要素。k近邻法1968 年由Cover和Hart提出。

      本章首先叙述k 近邻算法,然后讨论k 近邻法的模型及三个基本要素,最后讲述k 近邻法的一个实现方法——kd 树,介绍构造kd 树和搜索kd 树的算法。

 

 ——黎明传数

转载于:https://www.cnblogs.com/itmorn/p/7608464.html

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/767146
推荐阅读
相关标签
  

闽ICP备14008679号