赞
踩
数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具体取决于我们正在执行的任务和机器的要求。这看似简单,但对于 Twitter、Facebook 等大型组织、议会、联合国教科文组织等行政机构以及卫生部门组织来说,整个过程需要以非常结构化的方式执行。因此,执行步骤如下:
数据处理是机器学习 (ML) 管道中的关键步骤,因为它准备用于构建和训练 ML 模型的数据。数据处理的目标是以适合建模的格式清理、转换和准备数据。
有许多工具和库可用于 ML 中的数据处理,包括 Python 的 pandas 以及 RapidMiner 中的数据转换和清理工具。工具的选择将取决于项目的具体要求,包括数据的大小和复杂性以及期望的结果。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。