当前位置:   article > 正文

FPGA开发——(1)串口通信UART_fpga和上位机串口通讯

fpga和上位机串口通讯

1.简介

异步收发传输器(Universal Asynchronous Receiver/Transmitter)简称UART
发送数据时,将并行数据转换为串行数据来传输;在接收数据时,将接收的串行数据转换为并行数据

UART和SPI、IIC不同,UART是异步通信接口,异步通信的接收方不知道数据什么时候送达,因此发送方和接收方要约定传输的波特率

2.波特率、比特率

波特率:每秒钟传输码元的数量,用符号“Baud”表示,单位“波特每秒(Bps)”。串口常见的波特率有4800、9600、115200等,本节实验选用9600的波特率。
比特率:每秒钟传输比特的数量,单位“每秒比特数(bps)”。
比特率=波特率 * 单个调制状态对应的二进制位数,串口通信是采用二进制调制方式,因此串口的比特率为=9600Bps *1bit= 9600bps

串口发送、接收1bit数据的时间为一个波特,即1/9600秒,如果用FPGA的50Mhz(周期为20ns)的系统时钟来计数,需要计数cnt=50 000 000 / 9600 ≈ 5208个系统时钟周期,即每个bit数据之间在50Mhz的时钟频率下计数5208次。

3.RS232通信协议

1.RS232是UART的一种,没有时钟线,只有两根数据线rx和tx,两根线都是1bit位宽。
例:发送十进制数198,它的二进制为11000110,串行通信发送方只需要一根数据线就可以传输11000110。
2.rx位宽1bit,PC机通过串口调试助手往FPGA发数据,rx从低位往高位一次接收,最后在FPGA里拼接成8bit数据。
3.tx位宽1bit,FPGA通过串口调试助手往PC机发8bit,FPGA把8bit数据通过tx从最低位到最高位依次发送,最后上位机通过串口助手把一位一位的数据拼接成8bit数据。
4.帧结构,即一帧一帧发送和接收数据,每一帧除了8bit数据还有1bit起始位和1bit停止位。
在这里插入图片描述

4.代码

module  uart_rx
#(
    parameter   UART_BPS    =   'd9600,         //串口波特率
    parameter   CLK_FREQ    =   'd50_000_000    //时钟频率
)
(
    input   wire            sys_clk     ,   //系统时钟50MHz
    input   wire            sys_rst_n   ,   //全局复位
    input   wire            rx          ,   //串口接收数据

    output  reg     [7:0]   po_data     ,   //串转并后的8bit数据
    output  reg             po_flag         //串转并后的数据有效标志信号
);

//********************************************************************//
//****************** Parameter and Internal Signal *******************//
//********************************************************************//
//localparam    define
localparam  BAUD_CNT_MAX    =   CLK_FREQ/UART_BPS   ; //5208

//reg   define
reg         rx_reg1     ;
reg         rx_reg2     ;
reg         rx_reg3     ;
reg         start_nedge ;
reg         work_en     ;
reg [12:0]  baud_cnt    ;
reg         bit_flag    ;
reg [3:0]   bit_cnt     ;
reg [7:0]   rx_data     ;
reg         rx_flag     ;

//********************************************************************//
//***************************** Main Code ****************************//
//********************************************************************//
//插入两级寄存器进行数据同步,用来消除亚稳态
//rx_reg1:第一级寄存器,寄存器空闲状态复位为1
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        rx_reg1 <= 1'b1;
    else
        rx_reg1 <= rx; //第一个寄存器用于系统同步,表示数据位于系统时钟下

//rx_reg2:第二级寄存器,寄存器空闲状态复位为1
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        rx_reg2 <= 1'b1;
    else
        rx_reg2 <= rx_reg1;

//rx_reg3:第三级寄存器和第二级寄存器共同构成下降沿检测
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        rx_reg3 <= 1'b1;
    else
        rx_reg3 <= rx_reg2;

//start_nedge:检测到下降沿时start_nedge产生一个时钟的高电平
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        start_nedge <= 1'b0;
    else    if((~rx_reg2) && (rx_reg3)) //rx_reg2低电平 && rx_reg3高电平
        start_nedge <= 1'b1;
    else
        start_nedge <= 1'b0;

//work_en:接收数据工作使能信号
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        work_en <= 1'b0;
    else    if(start_nedge == 1'b1)
        work_en <= 1'b1;
    else    if((bit_cnt == 4'd8) && (bit_flag == 1'b1))
        work_en <= 1'b0;

//baud_cnt:波特率计数器计数,从0计数到BAUD_CNT_MAX - 1
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        baud_cnt <= 13'b0;
    else    if((baud_cnt == BAUD_CNT_MAX - 1) || (work_en == 1'b0))
        baud_cnt <= 13'b0;
    else    if(work_en == 1'b1)
        baud_cnt <= baud_cnt + 1'b1;

//bit_flag:当baud_cnt计数器计数到中间数时采样的数据最稳定,
//此时拉高一个标志信号表示数据可以被取走
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        bit_flag <= 1'b0;
    else    if(baud_cnt == BAUD_CNT_MAX/2 - 1)
        bit_flag <= 1'b1;
    else
        bit_flag <= 1'b0;

//bit_cnt:有效数据个数计数器,当8个有效数据(不含起始位和停止位)
//都接收完成后计数器清零
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        bit_cnt <= 4'b0;
    else    if((bit_cnt == 4'd8) && (bit_flag == 1'b1))
        bit_cnt <= 4'b0;
    else    if(bit_flag ==1'b1)
         bit_cnt <= bit_cnt + 1'b1;

//rx_data:输入数据进行移位
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        rx_data <= 8'b0;
    else    if((bit_cnt >= 4'd1)&&(bit_cnt <= 4'd8)&&(bit_flag == 1'b1))
        rx_data <= {rx_reg3, rx_data[7:1]};

//rx_flag:输入数据移位完成时rx_flag拉高一个时钟的高电平
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        rx_flag <= 1'b0;
    else    if((bit_cnt == 4'd8) && (bit_flag == 1'b1))
        rx_flag <= 1'b1;
    else
        rx_flag <= 1'b0;

//po_data:输出完整的8位有效数据
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        po_data <= 8'b0;
    else    if(rx_flag == 1'b1)
        po_data <= rx_data;

//po_flag:输出数据有效标志(比rx_flag延后一个时钟周期,为了和po_data同步)
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        po_flag <= 1'b0;
    else
        po_flag <= rx_flag;

endmodule

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
module  uart_tx
#(
    parameter   UART_BPS    =   'd9600,         //串口波特率
    parameter   CLK_FREQ    =   'd50_000_000    //时钟频率
)
(
     input   wire            sys_clk     ,   //系统时钟50MHz
     input   wire            sys_rst_n   ,   //全局复位
     input   wire    [7:0]   pi_data     ,   //模块输入的8bit数据
     input   wire            pi_flag     ,   //并行数据有效标志信号
 
     output  reg             tx              //串转并后的1bit数据
);

//********************************************************************//
//****************** Parameter and Internal Signal *******************//
//********************************************************************//
//localparam    define
localparam  BAUD_CNT_MAX    =   CLK_FREQ/UART_BPS   ;

//reg   define
reg [12:0]  baud_cnt;
reg         bit_flag;
reg [3:0]   bit_cnt ;
reg         work_en ;

//********************************************************************//
//***************************** Main Code ****************************//
//********************************************************************//
//work_en:接收数据工作使能信号
always@(posedge sys_clk or negedge sys_rst_n)
        if(sys_rst_n == 1'b0)
            work_en <= 1'b0;
        else    if(pi_flag == 1'b1)
            work_en <= 1'b1;
        else    if((bit_flag == 1'b1) && (bit_cnt == 4'd9))
            work_en <= 1'b0;

//baud_cnt:波特率计数器计数,从0计数到BAUD_CNT_MAX - 1
always@(posedge sys_clk or negedge sys_rst_n)
        if(sys_rst_n == 1'b0)
            baud_cnt <= 13'b0;
        else    if((baud_cnt == BAUD_CNT_MAX - 1) || (work_en == 1'b0))
            baud_cnt <= 13'b0;
        else    if(work_en == 1'b1)
            baud_cnt <= baud_cnt + 1'b1;

//bit_flag:当baud_cnt计数器计数到1时让bit_flag拉高一个时钟的高电平
always@(posedge sys_clk or negedge sys_rst_n)
        if(sys_rst_n == 1'b0)
            bit_flag <= 1'b0;
        else    if(baud_cnt == 13'd1)
            bit_flag <= 1'b1;
        else
            bit_flag <= 1'b0;

//bit_cnt:数据位数个数计数,10个有效数据(含起始位和停止位)到来后计数器清零
always@(posedge sys_clk or negedge sys_rst_n)
    if(sys_rst_n == 1'b0)
        bit_cnt <= 4'b0;
    else    if((bit_flag == 1'b1) && (bit_cnt == 4'd9))
        bit_cnt <= 4'b0;
    else    if((bit_flag == 1'b1) && (work_en == 1'b1))
        bit_cnt <= bit_cnt + 1'b1;

//tx:输出数据在满足rs232协议(起始位为0,停止位为1)的情况下一位一位输出
always@(posedge sys_clk or negedge sys_rst_n)
        if(sys_rst_n == 1'b0)
            tx <= 1'b1; //空闲状态时为高电平
        else    if(bit_flag == 1'b1)
            case(bit_cnt)
                0       : tx <= 1'b0;
                1       : tx <= pi_data[0];
                2       : tx <= pi_data[1];
                3       : tx <= pi_data[2];
                4       : tx <= pi_data[3];
                5       : tx <= pi_data[4];
                6       : tx <= pi_data[5];
                7       : tx <= pi_data[6];
                8       : tx <= pi_data[7];
                9       : tx <= 1'b1;
                default : tx <= 1'b1;
            endcase

endmodule

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
module  rs232
(
    input   wire    sys_clk     ,   //系统时钟50MHz
    input   wire    sys_rst_n   ,   //全局复位
    input   wire    rx          ,   //串口接收数据

    output  wire    tx              //串口发送数据
);

//********************************************************************//
//****************** Parameter and Internal Signal *******************//
//********************************************************************//
//parameter define
parameter   UART_BPS    =   20'd9600        ,   //比特9600
            CLK_FREQ    =   26'd50_000_000  ;   //时钟频率

//wire  define
wire    [7:0]   po_data;
wire            po_flag;

//********************************************************************//
//*************************** Instantiation **************************//
//********************************************************************//
//------------------------ uart_rx_inst ------------------------
uart_rx
#(
    .UART_BPS    (UART_BPS  ),  //串口波特率
    .CLK_FREQ    (CLK_FREQ  )   //时钟频率
)
uart_rx_inst
(
    .sys_clk    (sys_clk    ),  //input             sys_clk
    .sys_rst_n  (sys_rst_n  ),  //input             sys_rst_n
    .rx         (rx         ),  //input             rx
            
    .po_data    (po_data    ),  //output    [7:0]   po_data
    .po_flag    (po_flag    )   //output            po_flag
);

//------------------------ uart_tx_inst ------------------------
uart_tx
#(
    .UART_BPS    (UART_BPS  ),  //串口波特率
    .CLK_FREQ    (CLK_FREQ  )   //时钟频率
)
uart_tx_inst
(
    .sys_clk    (sys_clk    ),  //input             sys_clk
    .sys_rst_n  (sys_rst_n  ),  //input             sys_rst_n
    .pi_data    (po_data    ),  //input     [7:0]   pi_data
    .pi_flag    (po_flag    ),  //input             pi_flag
                
    .tx         (tx         )   //output            tx
);

endmodule

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/952122
推荐阅读
相关标签
  

闽ICP备14008679号