当前位置:   article > 正文

RabbitMQ超硬核面试题,直观明了 每天进步“亿,深入理解JVM的核心知识点_mq面试

mq面试
  • 异步处理 - 相比于传统的串行、并行方式,提高了系统吞吐量。

  • 应用解耦 - 系统间通过消息通信,不用关心其他系统的处理。

  • 流量削锋 - 可以通过消息队列长度控制请求量;可以缓解短时间内的高并发请求。

  • 日志处理 - 解决大量日志传输。

  • 消息通讯 - 消息队列一般都内置了高效的通信机制,因此也可以用在纯的消息通讯。比如实现点对点消息队列,或者聊天室等。


3.解耦、异步、削峰是什么?
  • 解耦:A 系统发送数据到 BCD 三个系统,通过接口调用发送。如果 E 系统也要这个数据呢?那如果 C 系统现在不需要了呢?A 系统负责人几乎崩溃…A 系统跟其它各种乱七八糟的系统严重耦合,A 系统产生一条比较关键的数据,很多系统都需要 A 系统将这个数据发送过来。如果使用 MQ,A系统产生一条数据,发送到 MQ 里面去,哪个系统需要数据自己去 MQ 里面消费。如果新系统需要数据,直接从 MQ 里消费即可;如果某个系统不需要这条数据了,就取消对 MQ 消息的消费即可。这样下来,A 系统压根儿不需要去考虑要给谁发送数据,不需要维护这个代码,也不需要考虑人家是否调用成功、失败超时等情况。就是一个系统或者一个模块,调用了多个系统或者模块,互相之间的调用很复杂,维护起来很麻烦。但是其实这个调用是不需要直接同步调用接口的,如果用 MQ 给它异步化解耦。

  • 异步:A 系统接收一个请求,需要在自己本地写库,还需要在 BCD 三个系统写库,自己本地写库要 3ms,BCD 三个系统分别写库要 300ms、450ms、200ms。最终请求总延时是 3 + 300 + 450+ 200 = 953ms,接近 1s,用户感觉搞个什么东西,慢死了慢死了。用户通过浏览器发起请求。如果使用 MQ,那么 A 系统连续发送 3 条消息到 MQ 队列中,假如耗时 5ms,A 系统从接受一个请求到返回响应给用户,总时长是 3 + 5 = 8ms。

  • 削峰:减少高峰时期对服务器压力。


4. 消息队列有什么缺点
  1. 系统可用性降低本来系统运行好好的,现在你非要加入个消息队列进去,那消息队列挂了,你的系统不是呵呵了。因此,系统可用性会降低;

  2. 系统复杂度提高加入了消息队列,要多考虑很多方面的问题,比如:一致性问题、如何保证消息不被重复消费、如何保证消息可靠性传输等。因此,需要考虑的东西更多,复杂性增大。

  3. 一致性问题A 系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是 BCD 三个系统那里,BD 两个系统写库成功了,结果 C 系统写库失败了,咋整?你这数据就不一致了。

所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,做好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了 10 倍。但是关键时刻,用,还是得用的。


5. 你们公司生产环境用的是什么消息中间件?
  • 这个首先你可以说下你们公司选用的是什么消息中间件,比如用的是RabbitMQ,然后可以初步给一些你对不同MQ中间件技术的选型分析。

举个例子:比如说ActiveMQ是老牌的消息中间件,国内很多公司过去运用的还是非常广泛的,功能很强大。但是问题在于没法确认ActiveMQ可以支撑互联网公司的高并发、高负载以及高吞吐的复杂场景,在国内互联网公司落地较少。而且使用较多的是一些传统企业,用ActiveMQ做异步调用和系统解耦。

  • 然后你可以说说RabbitMQ,他的好处在于可以支撑高并发、高吞吐、性能很高,同时有非常完善便捷的后台管理界面可以使用。另外,他还支持集群化、高可用部署架构、消息高可靠支持,功能较为完善。而且经过调研,国内各大互联网公司落地大规模RabbitMQ集群支撑自身业务的case较多,国内各种中小型互联网公司使用RabbitMQ的实践也比较多。除此之外,RabbitMQ的开源社区很活跃,较高频率的迭代版本,来修复发现的bug以及进行各种优化,因此综合考虑过后,公司采取了RabbitMQ。但是RabbitMQ也有一点缺陷,就是他自身是基于erlang语言开发的,所以导致较为难以分析里面的源码,也较难进行深层次的源码定制和改造,毕竟需要较为扎实的erlang语言功底才可以。

  • 然后可以聊聊RocketMQ,是阿里开源的,经过阿里的生产环境的超高并发、高吞吐的考验,性能卓越,同时还支持分布式事务等特殊场景。而且RocketMQ是基于Java语言开发的,适合深入阅读源码,有需要可以站在源码层面解决线上生产问题,包括源码的二次开发和改造。

  • 另外就是Kafka。Kafka提供的消息中间件的功能明显较少一些,相对上述几款MQ中间件要少很多。但是Kafka的优势在于专为超高吞吐量的实时日志采集、实时数据同步、实时数据计算等场景来设计。因此Kafka在大数据领域中配合实时计算技术(比如Spark Streaming、Storm、Flink)使用的较多。但是在传统的MQ中间件使用场景中较少采用。


6. Kafka、ActiveMQ、RabbitMQ、RocketMQ 有什么优缺点?

在这里插入图片描述

综上,各种对比之后,有如下建议:

  • 一般的业务系统要引入 MQ,最早大家都用 ActiveMQ,但是现在确实大家用的不多了,没经过大规模吞吐量场景的验证,社区也不是很活跃,所以大家还是算了吧,我个人不推荐用这个了;

  • 后来大家开始用 RabbitMQ,但是确实 erlang 语言阻止了大量的 Java 工程师去深入研究和掌控它,对公司而言,几乎处于不可控的状态,但是确实人家是开源的,比较稳定的支持,活跃度也高;

  • 不过现在确实越来越多的公司会去用 RocketMQ,确实很不错,毕竟是阿里出品,但社区可能有突然黄掉的风险(目前 RocketMQ 已捐给 Apache,但 GitHub 上的活跃度其实不算高)对自己公司技术实力有绝对自信的,推荐用 RocketMQ,否则回去老老实实用 RabbitMQ 吧,人家有活跃的开源社区,绝对不会黄。

  • 所以中小型公司,技术实力较为一般,技术挑战不是特别高,用 RabbitMQ 是不错的选择;大型公司,基础架构研发实力较强,用 RocketMQ 是很好的选择。

如果是大数据领域的实时计算、日志采集等场景,用 Kafka 是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范。


7. MQ 有哪些常见问题?如何解决这些问题?

MQ 的常见问题有:

  1. 消息的顺序问题

消息有序指的是可以按照消息的发送顺序来消费。

假如生产者产生了 2 条消息:M1、M2,假定 M1 发送到 S1,M2 发送到 S2,如果要保证 M1 先于 M2 被消费,怎么做?

在这里插入图片描述

M1,顺序在前:先发送 M2,顺序在后,后发送

解决方案:

1.保证生产者 -MQServer- 消费者是一对一的关系

在这里插入图片描述

缺陷:

1.并行度就会成为消息系统的瓶颈(吞吐量不够)更多的异常处理,比如:只要消费端出现问题,就会导致整个处理流程阻塞,我们不得不花费更多的精力来解决阻塞的问题。

2.通过合理的设计或者将问题分解来规避。不关注乱序的应用实际大量存在队列无序并不意味着消息无序 所以从业务层面来保证消息的顺序而不仅仅是依赖于消息系统,是一种更合理的方式。

  1. 消息的重复问题

造成消息重复的根本原因是:网络不可达。所以解决这个问题的办法就是绕过这个问题。那么问题就变成了:如果消费端收到两条一样的消息,应该怎样处理?

消费端处理消息的业务逻辑保持幂等性。只要保持幂等性,不管来多少条重复消息,最后处理的结果都一样。保证每条消息都有唯一编号且保证消息处理成功与去重表的日志同时出现。利用一张日志表来记录已经处理成功的消息的 ID,如果新到的消息 ID 已经在日志表中,那么就不再处理这条消息。


8. 什么是RabbitMQ?
  • RabbitMQ是一款开源的,Erlang编写的,消息中间件; 最大的特点就是消费并不需要确保提供方

存在,实现了服务之间的高度解耦 可以用它来:解耦、异步、削峰。


9. RabbitMQ 的使用场景
  1. 服务间异步通信

  2. 顺序消费

  3. 定时任务

  4. 请求削峰


10. RabbitMQ基本概念

在这里插入图片描述

  • Broker: 简单来说就是消息队列服务器实体。

  • Exchange: 消息交换机,它指定消息按什么规则,路由到哪个队列。

  • Queue: 消息队列载体,每个消息都会被投入到一个或多个队列。

  • Binding: 绑定,它的作用就是把exchange和queue按照路由规则绑定起来。

  • Routing Key: 路由关键字,exchange根据这个关键字进行消息投递。

  • VHost: vhost 可以理解为虚拟 broker ,即 mini-RabbitMQ server。其内部均含有独立的。

queue、exchange 和 binding 等,但最最重要的是,其拥有独立的权限系统,可以做到 vhost 范围的用户控制。当然,从 RabbitMQ 的全局角度,vhost 可以作为不同权限隔离的手段(一个典型的例子就是不同的应用可以跑在不同的 vhost 中)。

  • Producer: 消息生产者,就是投递消息的程序。

  • Consumer: 消息消费者,就是接受消息的程序。

  • Channel: 消息通道,在客户端的每个连接里,可建立多个channel,每个channel代表一个会话任务。

由Exchange、Queue、RoutingKey三个才能决定一个从Exchange到Queue的唯一的线路。


11. RabbitMQ的工作模式

一.simple模式(即最简单的收发模式)

在这里插入图片描述

  1. 消息产生消息,将消息放入队列
  1. 消息的消费者(consumer) 监听 消息队列,如果队列中有消息,就消费掉,消息被拿走后,自动从队列中删除(隐患 消息可能没有被消费者正确处理,已经从队列中消失了,造成消息的丢失,这里可以设置成手动的ack,但如果设置成手动ack,处理完后要及时发送ack消息给队列,否则会造成内存溢出)。

二.work工作模式(资源的竞争)

在这里插入图片描述

.消息产生者将消息放入队列消费者可以有多个,消费者1,消费者2同时监听同一个队列,消息被消费。C1 C2共同争抢当前的消息队列内容,谁先拿到谁负责消费消息(隐患:高并发情况下,默认会产生某一个消息被多个消费者共同使用,可以设置一个开关(syncronize) 保证一条消息只能被一个消费者使用)。

三.publish/subscribe发布订阅(共享资源)

在这里插入图片描述

1.每个消费者监听自己的队列。

2. 生产者将消息发给broker,由交换机将消息转发到绑定此交换机的每个队列,每个绑定交换机的队列都将接收到消息。

四.routing路由模式

在这里插入图片描述

  1. 消息生产者将消息发送给交换机按照路由判断,路由是字符串(info) 当前产生的消息携带路由字符(对象的方法),交换机根据路由的key,只能匹配上路由key对应的消息队列,对应的消费者才能消费消息。
  1. 根据业务功能定义路由字符串。
  1. 从系统的代码逻辑中获取对应的功能字符串,将消息任务扔到对应的队列中。
  1. 业务场景:error 通知;EXCEPTION;错误通知的功能;传统意义的错误通知;客户通知;利用key路由,可以将程序中的错误封装成消息传入到消息队列中,开发者可以自定义消费者,实时接收错误。

五.topic 主题模式(路由模式的一种)

在这里插入图片描述

  1. 星号井号代表通配符
  1. 星号代表多个单词,井号代表一个单词
  1. 路由功能添加模糊匹配
  1. 消息产生者产生消息,把消息交给交换机
  1. 交换机根据key的规则模糊匹配到对应的队列,由队列的监听消费者接收消息消费

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

img
img

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V:vip1024b 备注Java获取(资料价值较高,非无偿)
img

总结

上述知识点,囊括了目前互联网企业的主流应用技术以及能让你成为“香饽饽”的高级架构知识,每个笔记里面几乎都带有实战内容。

很多人担心学了容易忘,这里教你一个方法,那就是重复学习。

打个比方,假如你正在学习 spring 注解,突然发现了一个注解@Aspect,不知道干什么用的,你可能会去查看源码或者通过博客学习,花了半小时终于弄懂了,下次又看到@Aspect 了,你有点郁闷了,上次好像在哪哪哪学习,你快速打开网页花了五分钟又学会了。

从半小时和五分钟的对比中可以发现多学一次就离真正掌握知识又近了一步。

人的本性就是容易遗忘,只有不断加深印象、重复学习才能真正掌握,所以很多书我都是推荐大家多看几遍。哪有那么多天才,他只是比你多看了几遍书。

成为“香饽饽”的高级架构知识,每个笔记里面几乎都带有实战内容。

很多人担心学了容易忘,这里教你一个方法,那就是重复学习。

打个比方,假如你正在学习 spring 注解,突然发现了一个注解@Aspect,不知道干什么用的,你可能会去查看源码或者通过博客学习,花了半小时终于弄懂了,下次又看到@Aspect 了,你有点郁闷了,上次好像在哪哪哪学习,你快速打开网页花了五分钟又学会了。

从半小时和五分钟的对比中可以发现多学一次就离真正掌握知识又近了一步。

[外链图片转存中…(img-ii75GFFX-1711576370011)]

人的本性就是容易遗忘,只有不断加深印象、重复学习才能真正掌握,所以很多书我都是推荐大家多看几遍。哪有那么多天才,他只是比你多看了几遍书。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Guff_9hys/article/detail/971829
推荐阅读
相关标签
  

闽ICP备14008679号