当前位置:   article > 正文

【Python爬虫+数据分析】采集电商平台数据信息,并做可视化演示(带视频案例)_如何用爬虫抓取电商平台数据

如何用爬虫抓取电商平台数据

前言

随着电商平台的兴起,越来越多的人开始在网上购物。而对于电商平台来说,商品信息、价格、评论等数据是非常重要的。因此,抓取电商平台的商品信息、价格、评论等数据成为了一项非常有价值的工作。

接下来就让我来教你 如何使用Python编写爬虫程序,抓取电商平台的商品信息、价格、评论等数据

在这里插入图片描述

本次案例实现目标

  • 书籍基本数据
  • 实现可视化图表
  • 书籍评论数据
  • 评论可以实现词云图

最基本思路流程: <通用>

一. 数据来源分析

1.只有当你知道你想要数据内容, 是来自于哪里的时候, 才能通过代码请求得到数据
2.打开 F12 开发者工具进行抓包分析
3.通过关键字进行搜索查询数据包是请求那个url地址

二. 代码实现步骤过程: 代码实现基本四大步骤

1.发送请求, 模拟浏览器对于url地址<刚刚分析得到的url地址>发送请求
2.获取数据, 获取服务器返回响应数据 —> 开发者工具里面 response
3.解析数据, 提取我们想要的数据内容 —> 书籍基本信息
4.保存数据, 把数据内容保存到表格里面

请添加图片描述

代码实现

获取书籍详情信息

发送请求

源码.资料.素材.点击领取即可

url = f'http://bang.dangdang.com/books/bestsellers/01.00.00.00.00.00-recent7-0-0-1-1'
# 代码模拟浏览器发送请求 ---> headers请求头 <可以复制粘贴>
headers = {
    # User-Agent 用户代理 表示浏览器基本身份标识
    'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
}
# 发送请求
response = requests.get(url=url, headers=headers)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
解析数据
# 转换数据类型 ---> 可解析对象
selector = parsel.Selector(response.text)
# 第一次提取, 获取所有li标签
lis = selector.css('.bang_list_mode li')  # 返回列表
# for循环遍历, 把列表里面的元素一个一个提取出来
for li in lis:
    title = li.css('.name a::attr(title)').get()  # 标题/书名
    recommend = li.css('.tuijian::text').get().replace('推荐', '')  # 推荐
    star = li.css('.star a::text').get().replace('条评论', '')  # 评价
    author = li.css('div:nth-child(5) a:nth-child(1)::attr(title)').get()  # 作者
    date = li.css('div:nth-child(6) span::text').get()  # 出版日期
    press = li.css('div:nth-child(6) a::text').get()  # 出版社
    price_r = li.css('.price .price_r::text').get()  # 原价
    price_n = li.css('.price .price_n::text').get()  # 售价
    price_e = li.css('.price_e span::text').get()  # 电子书价格
    href = li.css('.name a::attr(href)').get()  # 详情页
    dit = {
        '标题': title,
        '推荐': recommend,
        '评价': star,
        '作者': author,
        '出版日期': date,
        '出版社': press,
        '原价': price_r,
        '售价': price_n,
        '电子书价格': price_e,
        '详情页': href,
    }
    csv_writer.writerow(dit)
    print(dit)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
保存数据
f = open('书籍.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=[
    '标题',
    '推荐',
    '评价',
    '作者',
    '出版日期',
    '出版社',
    '原价',
    '售价',
    '电子书价格',
    '详情页',
])
# 写入表头
csv_writer.writeheader()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
运行代码得到结果

请添加图片描述

请添加图片描述

在这里插入图片描述

可视化图表

书籍总体价格区间

python学习交流Q群:770699889 ###
pie1 = (
    Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px'))
    
    .add('', datas_pair_1, radius=['35%', '60%'])
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="当当网书籍\n\n原价价格区间", 
            pos_left='center', 
            pos_top='center',
            title_textstyle_opts=opts.TextStyleOpts(
                color='#F0F8FF', 
                font_size=20, 
                font_weight='bold'
            ),
        )
    )
    .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
)
pie1.render_notebook() 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

请添加图片描述

pie1 = (
    Pie(init_opts=opts.InitOpts(theme='dark',width='1000px',height='600px'))
    
    .add('', datas_pair_2, radius=['35%', '60%'])
    .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}:{d}%"))
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="当当网书籍\n\n售价价格区间", 
            pos_left='center', 
            pos_top='center',
            title_textstyle_opts=opts.TextStyleOpts(
                color='#F0F8FF', 
                font_size=20, 
                font_weight='bold'
            ),
        )
    )
    .set_colors(['#EF9050', '#3B7BA9', '#6FB27C', '#FFAF34', '#D8BFD8', '#00BFFF', '#7FFFAA'])
)
pie1.render_notebook() 

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

请添加图片描述

各个出版社书籍数量柱状图

bar=(
    Bar(init_opts=opts.InitOpts(height='500px',width='1000px',theme='dark'))
    .add_xaxis(counts.index.tolist())
    .add_yaxis(
        '出版社书籍数量',
        counts.values.tolist(),
        label_opts=opts.LabelOpts(is_show=True,position='top'),
        itemstyle_opts=opts.ItemStyleOpts(
            color=JsCode("""new echarts.graphic.LinearGradient(
            0, 0, 0, 1,[{offset: 0,color: 'rgb(255,99,71)'}, {offset: 1,color: 'rgb(32,178,170)'}])
            """
            )
        )
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title='各个出版社书籍数量柱状图'),
            xaxis_opts=opts.AxisOpts(name='书籍名称',
            type_='category',                                           
            axislabel_opts=opts.LabelOpts(rotate=90),
        ),
        yaxis_opts=opts.AxisOpts(
            name='数量',
            min_=0,
            max_=29.0,
            splitline_opts=opts.SplitLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(type_='dash'))
        ),
        tooltip_opts=opts.TooltipOpts(trigger='axis',axis_pointer_type='cross')
    )

    .set_series_opts(
        markline_opts=opts.MarkLineOpts(
            data=[
                opts.MarkLineItem(type_='average',name='均值'),
                opts.MarkLineItem(type_='max',name='最大值'),
                opts.MarkLineItem(type_='min',name='最小值'),
            ]
        )
    )
)
bar.render_notebook()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42

请添加图片描述

电子书版本占比

c = (
    Liquid()
    .add("lq", [1-per], is_outline_show=False)
    .set_global_opts(title_opts=opts.TitleOpts(title="电子书版本占比"))
)
c.render_notebook()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

请添加图片描述

书籍评论数据

源码点击文末名片获取
for page in range(1, 11):
    time.sleep(1)
    # 确定请求url地址
    url = 'http://product.dangdang.com/index.php'
    # 请求参数
    data = {
        'r': 'comment/list',
        'productId': '29129370',
        'categoryPath': '01.43.79.01.00.00',
        'mainProductId': '29129370',
        'mediumId': '0',
        'pageIndex': page,
        'sortType': '1',
        'filterType': '1',
        'isSystem': '1',
        'tagId': '0',
        'tagFilterCount': '0',
        'template': 'publish',
        'long_or_short': 'short',
    }
    # headers 请求头
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36'
    }
    # 发送请求
    response =  requests.get(url=url, params=data, headers=headers)
    # response.json() 获取响应json字典数据 键值对取值 ---> 根据冒号左边的内容, 提取冒号右边的内容
    html_data = response.json()['data']['list']['html']
    content_list = re.findall("<span><a href=.*?' target='_blank'>(.*?)</a></span>", html_data)
    with open('评论.txt', mode='a', encoding='utf-8') as f:
        f.write('\n'.join(content_list))
        f.write('\n')
        print(content_list)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

请添加图片描述

词云

import jieba # 分词模块 pip install jieba
import wordcloud
import imageio
img = imageio.imread('123.png')
# wordcloud
# 1. 打开文件 获取弹幕数据
# mode='r' 一定要写吗  不一定 默认以 r
# encoding='' 要写吗?  肯定要的
f = open('评论.txt', mode='r', encoding='utf-8')
txt = f.read()
# print(txt)
# 2. jieba分词 分割词汇
txt_list = jieba.lcut(txt)
# print(txt_list)
# 列表转字符串怎么转
string = ' '.join(txt_list)
# print(string)
# 3. 词云图设置
wc = wordcloud.WordCloud(
    width=800,  # 宽度
    height=500, # 高度
    background_color='white', # 背景颜色
    mask=img, # 设置图片样式
    font_path='msyh.ttc',
    scale=15,
    stopwords={'了', '的'},
    contour_width=5,
    contour_color='red'
)
# 4. 输入文字内容 (字符串的形式)
wc.generate(string)
# 5. 输出图片
wc.to_file('output2.png')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

请添加图片描述

视频教程

源码.资料.素材.点击领取即可

有一说一 这个案例当成自己的python作业,感觉还挺不错的

【爬虫+可视化】采集当当网商品数据信息,做可视化分析

好啦,今天的分享到这里就结束了 ~

对文章有问题的,或者有其他关于python的问题,可以在评论区留言或者私信我哦
觉得我分享的文章不错的话,可以关注一下我,或者给文章点赞(/≧▽≦)/

请添加图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/109096
推荐阅读
相关标签
  

闽ICP备14008679号