赞
踩
利用RFM模型做电商客户价值分析
客户细分是客户关系管理的一个主要的组成部分,本文尝试以电商企业为研究对象根据其客户特点,提出了一种基于客户价值分析RFM
模型,从而对客户进行分类,并对此结果进行动态的客户分析,以达到对不同的客户采取不同的客户服务的效果。
一、RFM模型介绍
1.RFM模型的基本原理
在RFM模式中,R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)
表示客户在最近一段时间内购买的金额。一般的分析型CRM着重在对于客户贡献度的分析,RFM则强调以客户的行为来区分客户。
利用RFM模型做电商客户价值分析
客户细分是客户关系管理的一个主要的组成部分,本文尝试以电商企业为研究对象根据其客户特点,提出了一种基于客户价值分析RFM模型,从而对客户进行分类,并对此结果进行动态的客户分析,以达到对不同的客户采取不同的客户服务的效果。
a、R(Recency)
R(Recency)最近一次消费:指最近一次会员来店铺购买的时间。
理论上,上一次消费时间越近的顾客应该是比较好的顾客,对提供即时的商品或是服务也最有可能会有反应。运营人员若想业绩有所成长,只能靠偷取竞争对手的市场占有率,而如果要密切地注意消费者的购买行为,那么最近的一次消费就是营销人员第一个要利用的工具。历史显示,如果我们能让消费者购买,他们就会持续购买。这也就是为什么,0至6个月的顾客收到运营人员的沟通信息多于2年以上的顾客。
最近一次消费的过程是持续变动的。在顾客距上一次购买时间满一个月之后,在数据库里就成为最近一次消费为两个月的客户。反之,同一天,最近一次消费为3个月前的客户作了其下一次的购买,他就成为最近一次消费为一天前的顾客,也就有可能在很短的期间内就收到新的折价信息。
最近一次消费的功能不仅在于提供的促销信息而已,营销人员的最近一次消费报告可以监督事业的健全度。优秀的营销人员会定期查看最近一次消费分析,以掌握趋势。月报告如果显示上一次购买很近的客户,(最近一次消费为1个月)
人数如增加,则表示该公司是个稳健成长的公司;反之,如上一次消费为一个月的客户越来越少,则是该公司迈向不健全之路的征兆。
b、F(Frequency)
F(Frequency)消费频率:会员在限定的期间内所购买的次数。
我们可以说最常购买的顾客,也是满意度最高的顾客。如果相信品牌及商店忠诚度的话,最常购买的消费者,忠诚度也就最高。增加顾客购买的次数意味着从竞争对手处偷取市场占有率,由别人的手中赚取营业额。
c、M(Monetary Value)
M(Monetary)消费金额:指会员在限定的期间内所购买的金额。
消费金额可以验证“帕雷托法则”(Pareto’s Law)——公司80%的收入来自20%的顾客。它显示出排名前10%的顾客所花费的金额比下一个等级者多出至少2倍,占公司所有营业额的40%以上。
作用:
A:RFM模型较为动态地层示了一个会员的全部轮廓,这对个性化的沟通和服务提供了依据。
B:如果与该会员打交道的时间足够长,也能够较为精确地判断该会员的长期价值(甚至是终身价值),通过改善三项指标的状况,从而为更多的营销决策提供支持。
二.RFM模型客户细分方法
细分步骤:
①将所有客戶按照Recency的值,由小排列到大;前20%的客戶给5分,次20%的客戶给4分,以此类推,最后的20%给1分。
②再将所有客戶按照Frequency的值,由大排列到小;以20%为一群,依序给予5,4,3,2,1分。
③最后将所有客戶按照Monetary的值,由大排列到小;以20%为一群,依序给予5,4,3,2,1分。
RFM的整合:
5-5-5:最好的顾客;
1-1-1:遗弃的客户;
5-1-1:需要挖掘的潜在客户;
1-1-5:运营人员重点维护的高价值客户。
将RFM分别分为5个等级会得到125种组合,计算RFM时,应该根据客户数据特点灵活运用。如果客户人数少,可以减少分级。
三.RFM模型的应用意义
在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为、购买的总体频率以及花了多少钱三项指标来描述该客户的价值状况。
RFM模型较为动态地层示了一个客户的全部轮廓,这对个性化的沟通和服务提供了依据,同时,如果与该客户打交道的时间足够长,也能够较为精确地判断该客户的长期价值(甚至是终身价值),通过改善三项指标的状况,从而为更多的营销决策提供支持。
RFM非常适用于生产多种商品的卖家,而且这些商品单价相对不高,如消费品、化妆品、服装、零食等;它也适合在一个企业内只有少数耐久商品,但是该商品中有一部分属于消耗品,如面膜、尿不湿、零食等消耗品
RFM可以用来提高客户的交易次数。业界常用的EDM和短信,常常批量滥发,不仅费钱而且效果很差。根据统计(以一般邮购日用品而言),如果将所有R(Resency)的客户分为五级,最好的第五级转换率是第四级的三倍,因为这些客户刚完成交易不久,所以会更注意店铺促销信息。如果用M(Monetary)来把客户分为五级,最好与次好的平均转化率,几乎没有显著差异。
有些人会用客户绝对贡献金额来分析客户是否流失,但是绝对金额有时会曲解客户行为。因为每个商品价格可能不同,对不同产品的促销有不同的折扣,所以采用相对的分级(例如R、F、M都各分为五级)来比较消费者在级别区间的变动,则更可以显现出相对行为。企业用R、F的变化,可以推测客户消费的异动状况,根据客户流失的可能性,列出客户,再从M(消费金额)的角度来分析,就可以把重点放在贡献度高且流失机会也高的客户上,重点拜访或联系,以最有效的方式挽回更多的商机。
RFM也不可以用过头,而造成高交易的客户不断收到短信。每一家店铺应该设计一个客户接触频率规则,如购买三天或一周内应该发出一个感谢的电话或Email,并主动关心消费者是否有使用方面的问题,一个月后发出使用是否满意的询问,而三个月后则提供交叉销售的建议,并开始注意客户的流失可能性,不断地创造主动接触客户的机会。这样一来,客户再购买的机会也会大幅提高。
企业在推行CRM时,就要根据RFM模型的原理,了解客户差异,并以此为主轴进行企业流程重建,才能创新业绩与利润。否则,将无法在新世纪的市场立足。
会员的价值体现在持续不断的为企业带来稳定的销售和利润,同时也为企业策略的制定提供数据支持。所以零售企业总是想尽一切办法去吸引更多的人成为会员,并且尽可能提高他们的忠诚度。忠诚度高的顾客表现为经常光顾购买,有较高的价格忍耐度,愿意支付更高的价格,也愿意向其他人推荐,对品牌满意度较高等。会员忠诚度高不一定会员价值就高,还得看他的实际消费金额,也就是消费力。忠诚度高、消费力强的顾客才是企业最优质的会员顾客。由于会员价值中“愿意向他人推荐”这个项目不好采集数据来量化,满意度也需要专项调查才能取得数据。所以结合这些特点,我们可以从以下几个指标去评估会员的综合价值:
1、最近一次消费时间理论上来讲,上一次购买时间距离现在越近的顾客价值越大。而他们得到营销人员眷顾的机会也应该大于那些很久没有光顾的顾客。当一位已经半年没有光临的顾客上周再次产生购买,那他就激活了自己的这个指标,所以最近一次消费时间是实时变化的,所以我们需要不断的激活顾客消费。
2、(某个周期内的)消费频率消费频率越高的顾客忠诚度越大,我们需要不断的采取营销手段去提高每个顾客的消费频率,这也是提高销售额非常有效的方法。一个产品没有重复购买的企业是非常危险的,意味着他的顾客都是新的,都是一锤子买卖。不光传统零售,现在重复购买率也是衡量一个电商网站的关键指标。消费频率最高的这部分顾客应该是得到企业关爱最多的群体,需要注意的是数据库营销不能过度营销,要以不骚扰用户为原则。
3、(某个周期内的)消费金额消费金额越大,顾客消费力也越大,在二八法则中,20%的顾客贡献了80%的销售额,而这些顾客也应该是得到营销资源最多的顾客。特别是当你的促销活动的费用资源不足的时候,这些高端的顾客就是你的首选对象。这个指标还需要和消费频率结合起来分析,有的顾客消费金额非常高,但是他可能只是购买了一次高单价商品,就再也没有光临过了。
这三项指标是著名的顾客价值研究的RFM模型,分别是R-Recency(最近购买时间),F-Frequency(消费频率),M-Monetary(消费金额)。这三个指标来自于美国数据库营销机构的研究,现在逐渐成为会员价值研究以及会员营销的通用模型了。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。