当前位置:   article > 正文

机器学习_机器学习的四个关键要素

机器学习的四个关键要素

简介

机器学习是一个多领域交叉学科。我们日常交互的大部分计算机程序可以使用最基本的命令来实现。当你把一个商品加进购物车时,你触发了电商的电子商务程序来把一个商品ID和你的用户ID插入到一个叫做购物车的数据库表格中。你可以在没有见到任何真正客户前来用最基本的程序指令来实现这个功能。如果你发现你可以这么做,那么你就不应该使用机器学习。

机器学习最简要素

成功的机器学习有四个要素:数据、转换数据的模型、衡量模型好坏的损失函数和一个调整模型权重来最小化损失函数的算法。

数据。越多越好。事实上,数据是深度学习复兴的核心,因为复杂的非线性模型比其他机器学习需要更多的数据。数据的例子包括
图片:例如你的手机图片,里面可能包含猫、狗、恐龙、高中同学聚会或者昨天的晚饭
文本:邮件、新闻和微信聊天记录
声音:有声书籍和电话记录
结构数据:Jupyter notebook(里面有文本,图片和代码)、网页、租车单和电费表
模型。通常数据和我们最终想要的相差很远,例如我们想知道照片中的人是不是在高兴,所以我们需要把一千万像素变成一个高兴度的概率值。通常我们需要在数据上应用数个非线性函数(例如神经网络)
损失函数。我们需要对比模型的输出和真实值之间的误差。损失函数帮助我们决定2017年底亚马逊股票会不会价值1500美元。取决于我们想短线还是长线,这个函数可以很不一样。
训练。通常一个模型里面有很多参数。我们通过最小化损失函数来学这些参数。不幸的是,即使我们做得很好也不能保证在新的没见过的数据上我们可以仍然做很好。
训练误差。这是模型在评估用来训练模型的数据集上的误差。这个类似于考试前我们在模拟试卷上拿到的分数。有一定的指向性,但不一定保证真实考试分数。
测试误差。这是模型在没见过的新数据上的误差,可能会跟训练误差不很一样(统计上叫过拟合)。这个类似于考前模考次次拿高分,但实际考起来却失误了。(笔者之一曾经做GRE真题时次次拿高分,高兴之下背了一遍红宝书就真上阵考试了,结果最终拿了一个刚刚够用的低分。后来意识到这是因为红宝书里包含了大量的真题。)
下面我们详细讨论一些不同的机器学习应用。

监督学习

监督学习描述的任务是,当给定输入x,如何通过在有标注输入和输出的数据上训练模型而能够预测输出y。从统计角度来说,监督学习主要关注如何估计条件概率P(y|x)。在实际情景中,监督学习最为常用。例如,给定一位患者的CT图像,预测该患者是否得癌症;给定英文句子,预测出它的正确中文翻译;给定本月公司财报数据,预测下个月该公司股票价格。

回归分析

回归分析也许是监督学习里最简单的一类任务。在该项任务里,输入是任意离散或连续的、单一或多个的变量,而输出是连续的数值。例如我们可以把本月公司财报数据抽取出若干特征,如营收总额、支出总额以及是否有负面报道,利用回归分析预测下个月该公司股票价格。

如果我们把模型预测的输出值和真实的输出值之间的差别定义为残差,常见的回归分析的损失函数包括训练数据的残差的平方和或者绝对值的和。机器学习的任务是找到一组模型参数使得损失函数最小化。我们会在之后的章节里详细介绍回归分析。

机器学习步骤

在这里插入图片描述

通常学习一个好的函数,分为以下三步:
1、选择一个合适的模型,这通常需要依据实际问题而定,针对不同的问题和任务需要选取恰当的模型,模型就是一组函数的集合。
2、判断一个函数的好坏,这需要确定一个衡量标准,也就是我们通常说的损失函数(Loss Function),损失函数的确定也需要依据具体问题而定,如回归问题一般采用欧式距离,分类问题一般采用交叉熵代价函数。
3、找出“最好”的函数,如何从众多函数中最快的找出“最好”的那一个,这一步是最大的难点,做到又快又准往往不是一件容易的事情。常用的方法有梯度下降算法,最小二乘法等和其他一些技巧(tricks)。
学习得到“最好”的函数后,需要在新样本上进行测试,只有在新样本上表现很好,才算是一个“好”的函数。

机器学习算法

决策树算法

决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。

朴素贝叶斯算法

朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。

支持向量机算法

基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面[8]。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。

随机森林算法

控制数据树生成的方式有多种,根据前人的经验,大多数时候更倾向选择分裂属性和剪枝,但这并不能解决所有问题,偶尔会遇到噪声或分裂属性过多的问题。基于这种情况,总结每次的结果可以得到袋外数据的估计误差,将它和测试样本的估计误差相结合可以评估组合树学习器的拟合及预测精度。此方法的优点有很多,可以产生高精度的分类器,并能够处理大量的变数,也可以平衡分类资料集之间的误差。

人工神经网络算法

人工神经网络与神经元组成的异常复杂的网络此大体相似,是个体单元互相连接而成,每个单元有数值量的输入和输出,形式可以为实数或线性组合函数。它先要以一种学习准则去学习,然后才能进行工作。当网络判断错误时,通过学习使其减少犯同样错误的可能性。此方法有很强的泛化能力和非线性映射能力,可以对信息量少的系统进行模型处理。从功能模拟角度看具有并行性,且传递信息速度极快。

Boosting与Bagging算法

Boosting是种通用的增强基础算法性能的回归分析算法。不需构造一个高精度的回归分析,只需一个粗糙的基础算法即可,再反复调整基础算法就可以得到较好的组合回归模型。它可以将弱学习算法提高为强学习算法,可以应用到其它基础回归算法,如线性回归、神经网络等,来提高精度。Bagging和前一种算法大体相似但又略有差别,主要想法是给出已知的弱学习算法和训练集,它需要经过多轮的计算,才可以得到预测函数列,最后采用投票方式对示例进行判别。



资料来源:
https://zhuanlan.zhihu.com/p/29100405
https://baike.baidu.com/item/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/217599?fr=aladdin

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/333304
推荐阅读
相关标签
  

闽ICP备14008679号