当前位置:   article > 正文

深度学习之如何使用Grad-CAM绘制自己的特征提取图-(Pytorch代码,详细注释)神经网络可视化-绘制自己的热力图_gradcam利用特征生成热力图

gradcam利用特征生成热力图

论文名称:Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
论文下载地址:https://arxiv.org/abs/1610.02391       

众所周知,我们一般是将神经网络理解成一个黑匣子,因此我们往往不知道神经网络特征提取提取的具体是图片的那部分,因此Grad-CAM诞生了,我们只需要少量的代码,Grad-CAM,就可以识别对神经网络模型特征提取图实现可视化,然后使我们清楚地看到神经网络究竟是根据图像的那部分特征进行识别的。

CAM我们就不讲了,挺麻烦的还得重新训练网络才可以绘制自己的热力图,因此为了解决CAM的问题,Grad-CAM于2017年诞生,他通过对某一层卷积层输出进行一系列的处理,可以得到我们网络提取的特征图,进行可视化。

如果我们绘制一系列的热力图我们就可以清楚的看到神经网络如何对我们的网络进行学习的。(详细的可以看上面的论文)这里我们介绍如何使用简单的使用自己的数据集和自己的模型绘制自己的热力图

如图 我这里是(随便拿了个网络的玉米病斑数据,然

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/340909
推荐阅读
相关标签
  

闽ICP备14008679号