赞
踩
MNIST 包括6万张28x28的训练样本,1万张测试样本,很多教程都会对它”下手”几乎成为一个 “典范”,可以说它就是计算机视觉里面的Hello World。所以我们这里也会使用MNIST来进行实战。
前面在介绍卷积神经网络的时候说到过LeNet-5,LeNet-5之所以强大就是因为在当时的环境下将MNIST数据的识别率提高到了99%,这里我们也自己从头搭建一个卷积神经网络,也达到99%的准确率
首先,我们定义一些超参数
- BATCH_SIZE=512 #大概需要2G的显存
- EPOCHS=20 # 总共训练批次
- DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 让torch判断是否使用GPU,建议使用GPU环境,因为会快很多
因为Pytorch里面包含了MNIST的数据集,所以我们这里直接使用即可。 如果第一次执行会生成data文件夹,并且需要一些时间下载,如果以前下载过就不会再次下载了
由于官方已经实现了dataset,所以这里可以直接使用DataLoader来对数据进行读取
- train_loader = torch.utils.data.DataLoader(
- datasets.MNIST('data', train=True, download=True,
- transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=BATCH_SIZE, shuffle=True)
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz Processing... Done!
测试集
- test_loader = torch.utils.data.DataLoader(
- datasets.MNIST('data', train=False, transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=BATCH_SIZE, shuffle=True)
下面我们定义一个网络,网络包含两个卷积层,conv1和conv2,然后紧接着两个线性层作为输出,最后输出10个维度,这10个维度我们作为0-9的标识来确定识别出的是那个数字
在这里建议大家将每一层的输入和输出维度都作为注释标注出来,这样后面阅读代码的会方便很多
- class ConvNet(nn.Module):
- def __init__(self):
- super().__init__()
- # batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)
- # 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小
- self.conv1 = nn.Conv2d(1, 10, 5) # 输入通道数1,输出通道数10,核的大小5
- self.conv2 = nn.Conv2d(10, 20, 3) # 输入通道数10,输出通道数20,核的大小3
- # 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数
- self.fc1 = nn.Linear(20*10*10, 500) # 输入通道数是2000,输出通道数是500
- self.fc2 = nn.Linear(500, 10) # 输入通道数是500,输出通道数是10,即10分类
- def forward(self,x):
- in_size = x.size(0) # 在本例中in_size=512,也就是BATCH_SIZE的值。输入的x可以看成是512*1*28*28的张量。
- out = self.conv1(x) # batch*1*28*28 -> batch*10*24*24(28x28的图像经过一次核为5x5的卷积,输出变为24x24)
- out = F.relu(out) # batch*10*24*24(激活函数ReLU不改变形状))
- out = F.max_pool2d(out, 2, 2) # batch*10*24*24 -> batch*10*12*12(2*2的池化层会减半)
- out = self.conv2(out) # batch*10*12*12 -> batch*20*10*10(再卷积一次,核的大小是3)
- out = F.relu(out) # batch*20*10*10
- out = out.view(in_size, -1) # batch*20*10*10 -> batch*2000(out的第二维是-1,说明是自动推算,本例中第二维是20*10*10)
- out = self.fc1(out) # batch*2000 -> batch*500
- out = F.relu(out) # batch*500
- out = self.fc2(out) # batch*500 -> batch*10
- out = F.log_softmax(out, dim=1) # 计算log(softmax(x))
- return out
我们实例化一个网络,实例化后使用.to方法将网络移动到GPU
优化器我们也直接选择简单暴力的Adam
- model = ConvNet().to(DEVICE)
- optimizer = optim.Adam(model.parameters())
下面定义一下训练的函数,我们将训练的所有操作都封装到这个函数中
- def train(model, device, train_loader, optimizer, epoch):
- model.train()
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = data.to(device), target.to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = F.nll_loss(output, target)
- loss.backward()
- optimizer.step()
- if(batch_idx+1)%30 == 0:
- print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch, batch_idx * len(data), len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), loss.item()))
测试的操作也一样封装成一个函数
- def test(model, device, test_loader):
- model.eval()
- test_loss = 0
- correct = 0
- with torch.no_grad():
- for data, target in test_loader:
- data, target = data.to(device), target.to(device)
- output = model(data)
- test_loss += F.nll_loss(output, target, reduction='sum').item() # 将一批的损失相加
- pred = output.max(1, keepdim=True)[1] # 找到概率最大的下标
- correct += pred.eq(target.view_as(pred)).sum().item()
-
- test_loss /= len(test_loader.dataset)
- print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
- test_loss, correct, len(test_loader.dataset),
- 100. * correct / len(test_loader.dataset)))
下面开始训练,这里就体现出封装起来的好处了,只要写两行就可以了
- for epoch in range(1, EPOCHS + 1):
- train(model, DEVICE, train_loader, optimizer, epoch)
- test(model, DEVICE, test_loader)
Train Epoch: 1 [14848/60000 (25%)] Loss: 0.272529 Train Epoch: 1 [30208/60000 (50%)] Loss: 0.235455 Train Epoch: 1 [45568/60000 (75%)] Loss: 0.101858 Test set: Average loss: 0.1018, Accuracy: 9695/10000 (97%) Train Epoch: 2 [14848/60000 (25%)] Loss: 0.057989 Train Epoch: 2 [30208/60000 (50%)] Loss: 0.083935 Train Epoch: 2 [45568/60000 (75%)] Loss: 0.051921 Test set: Average loss: 0.0523, Accuracy: 9825/10000 (98%) Train Epoch: 3 [14848/60000 (25%)] Loss: 0.045383 Train Epoch: 3 [30208/60000 (50%)] Loss: 0.049402 Train Epoch: 3 [45568/60000 (75%)] Loss: 0.061366 Test set: Average loss: 0.0408, Accuracy: 9866/10000 (99%) Train Epoch: 4 [14848/60000 (25%)] Loss: 0.035253 Train Epoch: 4 [30208/60000 (50%)] Loss: 0.038444 Train Epoch: 4 [45568/60000 (75%)] Loss: 0.036877 Test set: Average loss: 0.0433, Accuracy: 9859/10000 (99%) Train Epoch: 5 [14848/60000 (25%)] Loss: 0.038996 Train Epoch: 5 [30208/60000 (50%)] Loss: 0.020670 Train Epoch: 5 [45568/60000 (75%)] Loss: 0.034658 Test set: Average loss: 0.0339, Accuracy: 9885/10000 (99%) Train Epoch: 6 [14848/60000 (25%)] Loss: 0.067320 Train Epoch: 6 [30208/60000 (50%)] Loss: 0.016328 Train Epoch: 6 [45568/60000 (75%)] Loss: 0.017037 Test set: Average loss: 0.0348, Accuracy: 9881/10000 (99%) Train Epoch: 7 [14848/60000 (25%)] Loss: 0.022150 Train Epoch: 7 [30208/60000 (50%)] Loss: 0.009608 Train Epoch: 7 [45568/60000 (75%)] Loss: 0.012742 Test set: Average loss: 0.0346, Accuracy: 9895/10000 (99%) Train Epoch: 8 [14848/60000 (25%)] Loss: 0.010173 Train Epoch: 8 [30208/60000 (50%)] Loss: 0.019482 Train Epoch: 8 [45568/60000 (75%)] Loss: 0.012159 Test set: Average loss: 0.0323, Accuracy: 9886/10000 (99%) Train Epoch: 9 [14848/60000 (25%)] Loss: 0.007792 Train Epoch: 9 [30208/60000 (50%)] Loss: 0.006970 Train Epoch: 9 [45568/60000 (75%)] Loss: 0.004989 Test set: Average loss: 0.0294, Accuracy: 9909/10000 (99%) Train Epoch: 10 [14848/60000 (25%)] Loss: 0.003764 Train Epoch: 10 [30208/60000 (50%)] Loss: 0.005944 Train Epoch: 10 [45568/60000 (75%)] Loss: 0.001866 Test set: Average loss: 0.0361, Accuracy: 9902/10000 (99%) Train Epoch: 11 [14848/60000 (25%)] Loss: 0.002737 Train Epoch: 11 [30208/60000 (50%)] Loss: 0.014134 Train Epoch: 11 [45568/60000 (75%)] Loss: 0.001365 Test set: Average loss: 0.0309, Accuracy: 9905/10000 (99%) Train Epoch: 12 [14848/60000 (25%)] Loss: 0.003344 Train Epoch: 12 [30208/60000 (50%)] Loss: 0.003090 Train Epoch: 12 [45568/60000 (75%)] Loss: 0.004847 Test set: Average loss: 0.0318, Accuracy: 9902/10000 (99%) Train Epoch: 13 [14848/60000 (25%)] Loss: 0.001278 Train Epoch: 13 [30208/60000 (50%)] Loss: 0.003016 Train Epoch: 13 [45568/60000 (75%)] Loss: 0.001328 Test set: Average loss: 0.0358, Accuracy: 9906/10000 (99%) Train Epoch: 14 [14848/60000 (25%)] Loss: 0.002219 Train Epoch: 14 [30208/60000 (50%)] Loss: 0.003487 Train Epoch: 14 [45568/60000 (75%)] Loss: 0.014429 Test set: Average loss: 0.0376, Accuracy: 9896/10000 (99%) Train Epoch: 15 [14848/60000 (25%)] Loss: 0.003042 Train Epoch: 15 [30208/60000 (50%)] Loss: 0.002974 Train Epoch: 15 [45568/60000 (75%)] Loss: 0.000871 Test set: Average loss: 0.0346, Accuracy: 9909/10000 (99%) Train Epoch: 16 [14848/60000 (25%)] Loss: 0.000618 Train Epoch: 16 [30208/60000 (50%)] Loss: 0.003164 Train Epoch: 16 [45568/60000 (75%)] Loss: 0.007245 Test set: Average loss: 0.0357, Accuracy: 9905/10000 (99%) Train Epoch: 17 [14848/60000 (25%)] Loss: 0.001874 Train Epoch: 17 [30208/60000 (50%)] Loss: 0.013951 Train Epoch: 17 [45568/60000 (75%)] Loss: 0.000729 Test set: Average loss: 0.0322, Accuracy: 9922/10000 (99%) Train Epoch: 18 [14848/60000 (25%)] Loss: 0.002581 Train Epoch: 18 [30208/60000 (50%)] Loss: 0.001396 Train Epoch: 18 [45568/60000 (75%)] Loss: 0.015521 Test set: Average loss: 0.0389, Accuracy: 9914/10000 (99%) Train Epoch: 19 [14848/60000 (25%)] Loss: 0.000283 Train Epoch: 19 [30208/60000 (50%)] Loss: 0.001385 Train Epoch: 19 [45568/60000 (75%)] Loss: 0.011184 Test set: Average loss: 0.0383, Accuracy: 9901/10000 (99%) Train Epoch: 20 [14848/60000 (25%)] Loss: 0.000472 Train Epoch: 20 [30208/60000 (50%)] Loss: 0.003306 Train Epoch: 20 [45568/60000 (75%)] Loss: 0.018017 Test set: Average loss: 0.0393, Accuracy: 9899/10000 (99%)
我们看一下结果,准确率99%,没问题
如果你的模型连MNIST都搞不定,那么你的模型没有任何的价值
即使你的模型搞定了MNIST,你的模型也可能没有任何的价值
MNIST是一个很简单的数据集,由于它的局限性只能作为研究用途,对实际应用带来的价值非常有限。但是通过这个例子,我们可以完全了解一个实际项目的工作流程
我们找到数据集,对数据做预处理,定义我们的模型,调整超参数,测试训练,再通过训练结果对超参数进行调整或者对模型进行调整。
并且通过这个实战我们已经有了一个很好的模板,以后的项目都可以以这个模板为样例
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。