当前位置:   article > 正文

深度伪造(Deepfake)原理,生成和检测

deepfake

一. 前沿

众所周知,人工智能正迎来第三次发展浪潮,它既给社会发展带来了巨大机遇,同时也带来了诸多风险,人工智能对国家安全的影响已成为世界各国的重要关切和研究议程。作为人工智能深度学习领域的一个分支,Deepfake(深度伪造)技术在近几年迅速兴起,为国家间的政治抹黑、军事欺骗、经济犯罪甚至恐怖主义行动等提供了新工具,给政治安全、经济安全、社会安全、国民安全等国家安全领域带来了诸多风险。
本文会首先介绍Deepfake的相关背景及技术特点,然后以实战为导向详细介绍Deepfake的一种典型生成方案,最后会给出常用的防御(检测)策略。

二. Deepfake背景

深度伪造一词译自英文“Deepfake”(“deep learning”和“fake”的组合), 最初源于一个名为“deepfakes”的Reddit社交网站用户, 该用户于2017年12月在 Reddit 社交网站上发布了将斯嘉丽·约翰逊等女演员的面孔映射至色情表演者身上的伪造视频。Deepfake目前在国际上并没有公认的统一定义, 美国在其发布的《2018 年恶意伪造禁令法 案》中将“deep fake”定义为“以某种方式使合理的观察者错误地将其视为个人真实言语或行为的真实记录的方式创建或更改的视听记录”, 其中“视听记录”即指图像、视频和语音等数字内容。本文就采用这一定义,并针对“视听记录”中的视频领域的技术进行分析及实战。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/362319
推荐阅读
  

闽ICP备14008679号