搜索
查看
编辑修改
首页
UNITY
NODEJS
PYTHON
AI
GIT
PHP
GO
CEF3
JAVA
HTML
CSS
搜索
IT小白
这个屌丝很懒,什么也没留下!
关注作者
热门标签
jquery
HTML
CSS
PHP
ASP
PYTHON
GO
AI
C
C++
C#
PHOTOSHOP
UNITY
iOS
android
vue
xml
爬虫
SEO
LINUX
WINDOWS
JAVA
MFC
CEF3
CAD
NODEJS
GIT
Pyppeteer
article
热门文章
1
2024中国AI Agent行业研究报告
2
在 Android 上恢复已删除文件的 5 种简单方法_安卓文件恢复
3
springboot项目 Spring Security 302 问题 loginProcessingUrl 无效
4
安卓期末课程设计、一款刷小视频的App 包含源代码、使用手册和心得体会_android结课作业开发一个简易app
5
thinkphp框架源码交易系统资源网站源码_tp开发源码交易系统 网站交易
6
导出数据提示--secure-file-priv选项问题的解决方法
7
【Flink 面试指南】Flink 详解(一):基础篇(架构、并行度、算子)_flink 架构
8
【MySQL】mysql访问
9
腾讯云部署SD_sd不用web ui如何部署
10
自然语言处理技术(Natural Language Processing)知识点_基于自然语言处理的数据加工
当前位置:
article
> 正文
NLP论文多个领域经典、顶会、必读整理分享及相关解读博客分享_icassp nlp论文
作者:IT小白 | 2024-07-20 02:35:15
赞
踩
icassp nlp论文
持续更新收集***,更多内容详见
Github
1、Bert系列
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - NAACL 2019)
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding - arXiv 2019)
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding - arXiv 2019)
RoBERTa: A Robustly Optimized BERT Pretraining Approach - arXiv 2019)
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations - arXiv 2019)
Multi-Task Deep Neural Networks for Natural Language Understanding - arXiv 2019)
What does BERT learn about the structure of language?
(ACL2019)
Analyzing Multi-Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can Be Pruned
(ACL2019) [
github
]
Open Sesame: Getting Inside BERT's Linguistic Knowledge
(ACL2019 WS)
Analyzing the Structure of Attention in a Transformer Language Model
(ACL2019 WS)
What Does BERT Look At? An Analysis of BERT's Attention
(ACL2019 WS)
Do Attention Heads in BERT Track Syntactic Dependencies?
Blackbox meets blackbox: Representational Similarity and Stability Analysis of Neural Language Models and Brains
(ACL2019 WS)
Inducing Syntactic Trees from BERT Representations
(ACL2019 WS)
A Multiscale Visualization of Attention in the Transformer Model
(ACL2019 Demo)
Visualizing and Measuring the Geometry of BERT
How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings
(EMNLP2019)
Are Sixteen Heads Really Better than One?
(NeurIPS2019)
On the Validity of Self-Attention as Explanation in Transformer Models
Visualizing and Understanding the Effectiveness of BERT
(EMNLP2019)
Attention Interpretability Across NLP Tasks
Revealing the Dark Secrets of BERT
(EMNLP2019)
Investigating BERT's Knowledge of Language: Five Analysis Methods with NPIs
(EMNLP2019)
The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives
(EMNLP2019)
A Primer in BERTology: What we know about how BERT works
Do NLP Models Know Numbers? Probing Numeracy in Embeddings
(EMNLP2019)
How Does BERT Answer Questions? A Layer-Wise Analysis of Transformer Representations
(CIKM2019)
Whatcha lookin' at? DeepLIFTing BERT's Attention in Question Answering
What does BERT Learn from Multiple-Choice Reading Comprehension Datasets?
Calibration of Pre-trained Transformers
exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformers Models
[
github
]
MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
[
github
]
最前沿的12个NLP预训练模型
NLP预训练模型:从transformer到albert
XLNet:运行机制及和Bert的异同比较
Bert时代的创新(应用篇):Bert在NLP各领域的应用进展
2、Transformer系列
Attention Is All You Need - arXiv 2017)
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context - arXiv 2019)
Universal Transformers - ICLR 2019)
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer - arXiv 2019)
Reformer: The Efficient Transformer - ICLR 2020)
Adaptive Attention Span in Transformers
(ACL2019)
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
(ACL2019) [
github
]
Generating Long Sequences with Sparse Transformers
Adaptively Sparse Transformers
(EMNLP2019)
Compressive Transformers for Long-Range Sequence Modelling
The Evolved Transformer
(ICML2019)
Reformer: The Efficient Transformer
(ICLR2020) [
github
]
GRET: Global Representation Enhanced Transformer
(AAAI2020)
Transformer on a Diet
[
github
]
Efficient Content-Based Sparse Attention with Routing Transformers
BP-Transformer: Modelling Long-Range Context via Binary Partitioning
Recipes for building an open-domain chatbot
Longformer: The Long-Document Transformer
UnifiedQA: Crossing Format Boundaries With a Single QA System
[
github
]
《Attention is All You Need》浅读(简介+代码)
通俗易懂Transformer
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较
3、迁移学习系列(
Transfer Learning
)
Deep contextualized word representations - NAACL 2018)
Universal Language Model Fine-tuning for Text Classification - ACL 2018)
Improving Language Understanding by Generative Pre-Training - Alec Radford)
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding - NAACL 2019)
Cloze-driven Pretraining of Self-attention Networks - arXiv 2019)
Unified Language Model Pre-training for Natural Language Understanding and Generation - arXiv 2019)
MASS: Masked Sequence to Sequence Pre-training for Language Generation - ICML 2019)
MPNet: Masked and Permuted Pre-training for Language Understanding)
[
github
]
UNILMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training)
[
github
]
4、文本摘要系列(
Text Summarization
)
Positional Encoding to Control Output Sequence Length - Sho Takase(2019)
Fine-tune BERT for Extractive Summarization - Yang Liu(2019)
Language Models are Unsupervised Multitask Learners - Alec Radford(2019)
A Unified Model for Extractive and Abstractive Summarization using Inconsistency Loss - Wan-Ting Hsu(2018)
A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents - Arman Cohan(2018)
GENERATING WIKIPEDIA BY SUMMARIZING LONG SEQUENCES - Peter J. Liu(2018)
Get To The Point: Summarization with Pointer-Generator Networks - Abigail See(2017)
*
A Neural Attention Model for Sentence Summarization - Alexander M. Rush(2015)
HIBERT: Document Level Pre-training of Hierarchical Bidirectional Transformers for Document Summarization
(ACL2019)
Deleter: Leveraging BERT to Perform Unsupervised Successive Text Compression
Discourse-Aware Neural Extractive Model for Text Summarization
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
[
github
]
Discourse-Aware Neural Extractive Text Summarization
[
github
]
5、情感分析系列(
Sentiment Analysis
)
Multi-Task Deep Neural Networks for Natural Language Understanding - Xiaodong Liu(2019)
Aspect-level Sentiment Analysis using AS-Capsules - Yequan Wang(2019)
On the Role of Text Preprocessing in Neural Network Architectures: An Evaluation Study on Text Categorization and Sentiment Analysis - Jose Camacho-Collados(2018)
Learned in Translation: Contextualized Word Vectors - Bryan McCann(2018)
Universal Language Model Fine-tuning for Text Classification - Jeremy Howard(2018)
Convolutional Neural Networks with Recurrent Neural Filters - Yi Yang(2018)
Information Aggregation via Dynamic Routing for Sequence Encoding - Jingjing Gong(2018)
Learning to Generate Reviews and Discovering Sentiment - Alec Radford(2017)
A Structured Self-attentive Sentence Embedding - Zhouhan Lin(2017)
Utilizing BERT for Aspect-Based Sentiment Analysis via Constructing Auxiliary Sentence
(NAACL2019)
BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis
(NAACL2019)
Exploiting BERT for End-to-End Aspect-based Sentiment Analysis
(EMNLP2019 WS)
Adapt or Get Left Behind: Domain Adaptation through BERT Language Model Finetuning for Aspect-Target Sentiment Classification
An Investigation of Transfer Learning-Based Sentiment Analysis in Japanese
(ACL2019)
"Mask and Infill" : Applying Masked Language Model to Sentiment Transfer
Adversarial Training for Aspect-Based Sentiment Analysis with BERT
Utilizing BERT Intermediate Layers for Aspect Based Sentiment Analysis and Natural Language Inference
6、问答&阅读理解&对话系统系列(
Question Answering
)
Language Models are Unsupervised Multitask Learners - Alec Radford(2019)
Improving Language Understanding by Generative Pre-Training - Alec Radford(2018)
Bidirectional Attention Flow for Machine Comprehension - Minjoon Seo(2018)
Reinforced Mnemonic Reader for Machine Reading Comprehension - Minghao Hu(2017)
Neural Variational Inference for Text Processing - Yishu Miao(2015)
A BERT Baseline for the Natural Questions
MultiQA: An Empirical Investigation of Generalization and Transfer in Reading Comprehension
(ACL2019)
Unsupervised Domain Adaptation on Reading Comprehension
BERTQA -- Attention on Steroids
A Multi-Type Multi-Span Network for Reading Comprehension that Requires Discrete Reasoning
(EMNLP2019)
SDNet: Contextualized Attention-based Deep Network for Conversational Question Answering
Multi-hop Question Answering via Reasoning Chains
Select, Answer and Explain: Interpretable Multi-hop Reading Comprehension over Multiple Documents
Multi-step Entity-centric Information Retrieval for Multi-Hop Question Answering
(EMNLP2019 WS)
End-to-End Open-Domain Question Answering with BERTserini
(NAALC2019)
Latent Retrieval for Weakly Supervised Open Domain Question Answering
(ACL2019)
Multi-passage BERT: A Globally Normalized BERT Model for Open-domain Question Answering
(EMNLP2019)
Learning to Retrieve Reasoning Paths over Wikipedia Graph for Question Answering
(ICLR2020)
Learning to Ask Unanswerable Questions for Machine Reading Comprehension
(ACL2019)
Unsupervised Question Answering by Cloze Translation
(ACL2019)
Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation
A Recurrent BERT-based Model for Question Generation
(EMNLP2019 WS)
Learning to Answer by Learning to Ask: Getting the Best of GPT-2 and BERT Worlds
Enhancing Pre-Trained Language Representations with Rich Knowledge for Machine Reading Comprehension
(ACL2019)
Incorporating Relation Knowledge into Commonsense Reading Comprehension with Multi-task Learning
(CIKM2019)
SG-Net: Syntax-Guided Machine Reading Comprehension
MMM: Multi-stage Multi-task Learning for Multi-choice Reading Comprehension
Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning
(EMNLP2019)
ReClor: A Reading Comprehension Dataset Requiring Logical Reasoning
(ICLR2020)
Robust Reading Comprehension with Linguistic Constraints via Posterior Regularization
BAS: An Answer Selection Method Using BERT Language Model
Beat the AI: Investigating Adversarial Human Annotations for Reading Comprehension
A Simple but Effective Method to Incorporate Multi-turn Context with BERT for Conversational Machine Comprehension
(ACL2019 WS)
FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine Comprehension
(ACL2019 WS)
BERT with History Answer Embedding for Conversational Question Answering
(SIGIR2019)
GraphFlow: Exploiting Conversation Flow with Graph Neural Networks for Conversational Machine Comprehension
(ICML2019 WS)
Beyond English-only Reading Comprehension: Experiments in Zero-Shot Multilingual Transfer for Bulgarian
(RANLP2019)
XQA: A Cross-lingual Open-domain Question Answering Dataset
(ACL2019)
Cross-Lingual Machine Reading Comprehension
(EMNLP2019)
Zero-shot Reading Comprehension by Cross-lingual Transfer Learning with Multi-lingual Language Representation Model
Multilingual Question Answering from Formatted Text applied to Conversational Agents
BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels
(EMNLP2019)
MLQA: Evaluating Cross-lingual Extractive Question Answering
Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension
(TACL)
SberQuAD - Russian Reading Comprehension Dataset: Description and Analysis
Giving BERT a Calculator: Finding Operations and Arguments with Reading Comprehension
(EMNLP2019)
BERT-DST: Scalable End-to-End Dialogue State Tracking with Bidirectional Encoder Representations from Transformer
(Interspeech2019)
Dialog State Tracking: A Neural Reading Comprehension Approach
A Simple but Effective BERT Model for Dialog State Tracking on Resource-Limited Systems
(ICASSP2020)
Fine-Tuning BERT for Schema-Guided Zero-Shot Dialogue State Tracking
Goal-Oriented Multi-Task BERT-Based Dialogue State Tracker
Domain Adaptive Training BERT for Response Selection
BERT Goes to Law School: Quantifying the Competitive Advantage of Access to Large Legal Corpora in Contract Understanding
7、机器翻译
The Evolved Transformer - David R. So(2019)
8、综述
Evolution of transfer learning in natural language processing
Pre-trained Models for Natural Language Processing: A Survey
A Survey on Contextual Embeddings
9、谓词填充
BERT for Joint Intent Classification and Slot Filling
Multi-lingual Intent Detection and Slot Filling in a Joint BERT-based Model
A Comparison of Deep Learning Methods for Language Understanding
(Interspeech2019)
10、实体识别
BERT Meets Chinese Word Segmentation
Toward Fast and Accurate Neural Chinese Word Segmentation with Multi-Criteria Learning
Establishing Strong Baselines for the New Decade: Sequence Tagging, Syntactic and Semantic Parsing with BERT
Evaluating Contextualized Embeddings on 54 Languages in POS Tagging, Lemmatization and Dependency Parsing
NEZHA: Neural Contextualized Representation for Chinese Language Understanding
Deep Contextualized Word Embeddings in Transition-Based and Graph-Based Dependency Parsing -- A Tale of Two Parsers Revisited
(EMNLP2019)
Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing?
Parsing as Pretraining
(AAAI2020)
Cross-Lingual BERT Transformation for Zero-Shot Dependency Parsing
Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement
Named Entity Recognition -- Is there a glass ceiling?
(CoNLL2019)
A Unified MRC Framework for Named Entity Recognition
Training Compact Models for Low Resource Entity Tagging using Pre-trained Language Models
Robust Named Entity Recognition with Truecasing Pretraining
(AAAI2020)
LTP: A New Active Learning Strategy for Bert-CRF Based Named Entity Recognition
MT-BioNER: Multi-task Learning for Biomedical Named Entity Recognition using Deep Bidirectional Transformers
Portuguese Named Entity Recognition using BERT-CRF
Towards Lingua Franca Named Entity Recognition with BERT
11、关系抽取
Matching the Blanks: Distributional Similarity for Relation Learning
(ACL2019)
BERT-Based Multi-Head Selection for Joint Entity-Relation Extraction
(NLPCC2019)
Enriching Pre-trained Language Model with Entity Information for Relation Classification
Span-based Joint Entity and Relation Extraction with Transformer Pre-training
Fine-tune Bert for DocRED with Two-step Process
Entity, Relation, and Event Extraction with Contextualized Span Representations
(EMNLP2019)
12、知识库
KG-BERT: BERT for Knowledge Graph Completion
Language Models as Knowledge Bases?
(EMNLP2019) [
github
]
BERT is Not a Knowledge Base (Yet): Factual Knowledge vs. Name-Based Reasoning in Unsupervised QA
Inducing Relational Knowledge from BERT
(AAAI2020)
Latent Relation Language Models
(AAAI2020)
Pretrained Encyclopedia: Weakly Supervised Knowledge-Pretrained Language Model
(ICLR2020)
Zero-shot Entity Linking with Dense Entity Retrieval
Investigating Entity Knowledge in BERT with Simple Neural End-To-End Entity Linking
(CoNLL2019)
Improving Entity Linking by Modeling Latent Entity Type Information
(AAAI2020)
PEL-BERT: A Joint Model for Protocol Entity Linking
How Can We Know What Language Models Know?
REALM: Retrieval-Augmented Language Model Pre-Training
13、文本分类
How to Fine-Tune BERT for Text Classification?
X-BERT: eXtreme Multi-label Text Classification with BERT
DocBERT: BERT for Document Classification
Enriching BERT with Knowledge Graph Embeddings for Document Classification
Classification and Clustering of Arguments with Contextualized Word Embeddings
(ACL2019)
BERT for Evidence Retrieval and Claim Verification
Stacked DeBERT: All Attention in Incomplete Data for Text Classification
Cost-Sensitive BERT for Generalisable Sentence Classification with Imbalanced Data
14、文本生成
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model
(NAACL2019 WS)
Pretraining-Based Natural Language Generation for Text Summarization
Text Summarization with Pretrained Encoders
(EMNLP2019) [
github (original)
] [
github (huggingface)
]
Multi-stage Pretraining for Abstractive Summarization
PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization
MASS: Masked Sequence to Sequence Pre-training for Language Generation
(ICML2019) [
github
], [
github
]
Unified Language Model Pre-training for Natural Language Understanding and Generation
[
github
] (NeurIPS2019)
UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training
[
github
]
ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training
Towards Making the Most of BERT in Neural Machine Translation
Improving Neural Machine Translation with Pre-trained Representation
On the use of BERT for Neural Machine Translation
(EMNLP2019 WS)
Incorporating BERT into Neural Machine Translation
(ICLR2020)
Recycling a Pre-trained BERT Encoder for Neural Machine Translation
Leveraging Pre-trained Checkpoints for Sequence Generation Tasks
Mask-Predict: Parallel Decoding of Conditional Masked Language Models
(EMNLP2019)
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
ERNIE-GEN: An Enhanced Multi-Flow Pre-training and Fine-tuning Framework for Natural Language Generation
Cross-Lingual Natural Language Generation via Pre-Training
(AAAI2020) [
github
]
Multilingual Denoising Pre-training for Neural Machine Translation
PLATO: Pre-trained Dialogue Generation Model with Discrete Latent Variable
Unsupervised Pre-training for Natural Language Generation: A Literature Review
15、纠错
(多任务、masking策略等)
Multi-Task Deep Neural Networks for Natural Language Understanding
(ACL2019)
The Microsoft Toolkit of Multi-Task Deep Neural Networks for Natural Language Understanding
BERT and PALs: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning
(ICML2019)
Unifying Question Answering and Text Classification via Span Extraction
ERNIE: Enhanced Language Representation with Informative Entities
(ACL2019)
ERNIE: Enhanced Representation through Knowledge Integration
ERNIE 2.0: A Continual Pre-training Framework for Language Understanding
(AAAI2020)
Pre-Training with Whole Word Masking for Chinese BERT
SpanBERT: Improving Pre-training by Representing and Predicting Spans
[
github
]
Blank Language Models
Efficient Training of BERT by Progressively Stacking
(ICML2019) [
github
]
RoBERTa: A Robustly Optimized BERT Pretraining Approach
[
github
]
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
(ICLR2020)
ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators
(ICLR2020) [
github
] [
blog
]
FreeLB: Enhanced Adversarial Training for Language Understanding
(ICLR2020)
KERMIT: Generative Insertion-Based Modeling for Sequences
DisSent: Sentence Representation Learning from Explicit Discourse Relations
(ACL2019)
StructBERT: Incorporating Language Structures into Pre-training for Deep Language Understanding
(ICLR2020)
Syntax-Infused Transformer and BERT models for Machine Translation and Natural Language Understanding
SenseBERT: Driving Some Sense into BERT
Semantics-aware BERT for Language Understanding
(AAAI2020)
K-BERT: Enabling Language Representation with Knowledge Graph
Knowledge Enhanced Contextual Word Representations
(EMNLP2019)
KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
(EMNLP2019)
SBERT-WK: A Sentence Embedding Method By Dissecting BERT-based Word Models
Universal Text Representation from BERT: An Empirical Study
Symmetric Regularization based BERT for Pair-wise Semantic Reasoning
Transfer Fine-Tuning: A BERT Case Study
(EMNLP2019)
Improving Pre-Trained Multilingual Models with Vocabulary Expansion
(CoNLL2019)
SesameBERT: Attention for Anywhere
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
[
github
]
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
16、多模态系列
VideoBERT: A Joint Model for Video and Language Representation Learning
(ICCV2019)
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
(NeurIPS2019)
VisualBERT: A Simple and Performant Baseline for Vision and Language
Selfie: Self-supervised Pretraining for Image Embedding
ImageBERT: Cross-modal Pre-training with Large-scale Weak-supervised Image-Text Data
Contrastive Bidirectional Transformer for Temporal Representation Learning
M-BERT: Injecting Multimodal Information in the BERT Structure
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
(EMNLP2019)
Fusion of Detected Objects in Text for Visual Question Answering
(EMNLP2019)
BERT representations for Video Question Answering
(WACV2020)
Unified Vision-Language Pre-Training for Image Captioning and VQA
[
github
]
Large-scale Pretraining for Visual Dialog: A Simple State-of-the-Art Baseline
VL-BERT: Pre-training of Generic Visual-Linguistic Representations
(ICLR2020)
Unicoder-VL: A Universal Encoder for Vision and Language by Cross-modal Pre-training
UNITER: Learning UNiversal Image-TExt Representations
Supervised Multimodal Bitransformers for Classifying Images and Text
Weak Supervision helps Emergence of Word-Object Alignment and improves Vision-Language Tasks
BERT Can See Out of the Box: On the Cross-modal Transferability of Text Representations
BERT for Large-scale Video Segment Classification with Test-time Augmentation
(ICCV2019WS)
SpeechBERT: Cross-Modal Pre-trained Language Model for End-to-end Spoken Question Answering
vq-wav2vec: Self-Supervised Learning of Discrete Speech Representations
Effectiveness of self-supervised pre-training for speech recognition
Understanding Semantics from Speech Through Pre-training
Towards Transfer Learning for End-to-End Speech Synthesis from Deep Pre-Trained Language Models
17、模型压缩
Distilling Task-Specific Knowledge from BERT into Simple Neural Networks
Patient Knowledge Distillation for BERT Model Compression
(EMNLP2019)
Small and Practical BERT Models for Sequence Labeling
(EMNLP2019)
Pruning a BERT-based Question Answering Model
TinyBERT: Distilling BERT for Natural Language Understanding
[
github
]
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter
(NeurIPS2019 WS) [
github
]
Knowledge Distillation from Internal Representations
(AAAI2020)
PoWER-BERT: Accelerating BERT inference for Classification Tasks
WaLDORf: Wasteless Language-model Distillation On Reading-comprehension
Extreme Language Model Compression with Optimal Subwords and Shared Projections
BERT-of-Theseus: Compressing BERT by Progressive Module Replacing
Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning
MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers
Compressing Large-Scale Transformer-Based Models: A Case Study on BERT
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
MobileBERT: Task-Agnostic Compression of BERT by Progressive Knowledge Transfer
Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
Q8BERT: Quantized 8Bit BERT
(NeurIPS2019 WS)
参考:
https://zhuanlan.zhihu.com/p/143123368
声明:
本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:
https://www.wpsshop.cn/w/IT小白/article/detail/854750
推荐阅读
article
全开源!
Office
多人
协作
应用,
在线
编辑
Word
、Excel和PPT文档_
在线
编辑
word
开源...
比起传统的
Office
系统,
Office
在线
协作
应用正如其名,通过云端数据推进
协作
办公,将数据资产和文档协同结合起来,实...
赞
踩
article
<
<
em>if
<
/em>
<
em>test
<
/em>
<
em>=
<
/em>““></
<
em>if
<
/em>>的
sql
语句_
<
<
em>if
<
/em>
<
em>test
<
/em>
<
em>=
<
/em>...
mybatis中动态
sql
中使用取决于数据库中该字段的约束1、 如果为NOT NULL,那么mapper.xml中必须要...
赞
踩
article
Uniapp
笔记
(
一
)初识
uniapp
...
微信小程序简称小程序,英文名Mini Program,是
一
种不需要下载安装即可使用的应用,它实现了应用“触手可及”的梦想...
赞
踩
article
Hadoop
高
可用
(
HA
)
集群
搭建_
ha
doop
ha
模式
集群
构建...
查看namenode节点状态:hdfs
ha
admin -getServiceState nn1|nn2。这里装了四台机...
赞
踩
article
孤立
森林
异常
点
检测
_
孤立
森林
对时间序列
数据
进行
异常
检测
...
孤立
森林
异常
点
检测
_
孤立
森林
对时间序列
数据
进行
异常
检测
孤立
森林
对时间序列
数据
进行
异常
检测
...
赞
踩
article
hadoop
伪
分布式
环境
搭建,完整的详细
步骤
_
伪
分布式
安装
步骤
...
hadoop
伪
分布式
环境
搭建,完整的详细
步骤
一、搭建
伪
分布式
本次实验
环境
:1、VMware142、一台ubtuntu 1...
赞
踩
article
【
学习
笔记】
无人机
(
UAV
)在
3GPP
系统
中的增强
支持
(十三)-更换
无人机
控制器
...
本文是
3GPP
TR 22.829 V17.1.0技术报告,专注于
无人机
(
UAV
)在
3GPP
系统
中的增强
支持
。文章提出了...
赞
踩
article
ComfyUI
局部
重绘
的4种方式_
comfyui
使用
sam
,
局部
重绘
...
设置Latent噪波遮罩。_
comfyui
使用
sam
,
局部
重绘
comfyui
使用
sam
,
局部
重绘
...
赞
踩
article
直播
| 华为
云卢栋
才:
对话
机器人
的
应用实践和
最新进展
...
「PW Live」是由 PaperWeekly 和 biendata 共同发起
的
学术
直播
间,旨在帮助更多
的
青年学者宣传其...
赞
踩
article
【
Python
爬虫
】
有道
翻译
新旧
API
接口
_
有道
翻译
爬虫
接口
变了...
有道
翻译
官网新旧
翻译
API
接口
爬虫
_
有道
翻译
爬虫
接口
变了
有道
翻译
爬虫
接口
变了 ...
赞
踩
article
【正点原子
Linux
连载】第五章 SDK
镜像
烧录 摘自【正点原子】
ATK
-
DLRK3568
嵌入式Li...
1)实验平台:正点原子
ATK
-
DLRK3568
开发
板2)平台购买地址:https://detail.tmall.com/...
赞
踩
article
基于
GEC6818
开发板
的
华为
云物
联网
数据
监控项目整理_
gec6818
开发板
摄像头
...
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过
华为
、OPPO等大厂,18年进入阿里一直到现在。深知大多数...
赞
踩
article
报表
生成器
FastReport
.
Net
用户指南:组别
和
总数_
fastreport
分组
...
本文介绍
报表
生成器
FastReport
.
Net
中创建组别
和
总数相关教程,欢迎查阅~_
fastreport
分组
fast...
赞
踩
article
【分享】
对外
API
接口
安全
设计
_
对外
接口
设计
安全
key
ip
有效期
限制...
前言最近公司业务需要
对外
提供
接口
,之前没有什么
对外
接口
开发经验所以最近找了很多文章,恶补了一下
对外
接口
开发知识,这篇算是...
赞
踩
article
自动化
分组
工具
-
AutoGroup
:
技术
解析与应用探索...
自动化
分组
工具
-
AutoGroup
:
技术
解析与应用探索项目地址
:
https
:
//gitcode.com/LaoLi...
赞
踩
article
深度学习之
图像
分类(十四)
CAT
:
Cross
Attention
in Vision Transf...
由于
Transformer
在自然语言处理(NLP)中得到了广泛应用,人们已经意识到
Transformer
在计算机视觉(C...
赞
踩
article
零
信任
(起源、发展、价值、实现.)_
零
信任
架构
可以
防御哪些
攻击
...
是围绕某个应用或一组应用创建的基于身份和上下文的逻辑访问边界。应用是隐藏的,无法被发现,并且通过信息代理限制一组指定实体...
赞
踩
article
大
数
据
的
特点_
数
据
的
多样性
特点是指大
数
据
丰富
的
数
据
来源,包含了
结构化
数
据
源和非
结构化
数
...
1、
数
据
量大 人类社会产生
的
数
据
每两年就增加一倍——“大
数
据
摩尔定律”。2、
数
据
类型繁多 大
数
据
的
数
据
类型丰富,包括结构...
赞
踩
article
Chrome
ajax
302
问题_
chrome
中
js 获取
302
状态
码...
ECSHOP的后台每次删除一个商品都要报下面的错误Uncaught transport.js/parseResult()...
赞
踩
article
python
胶水
语言
为什么
_
python
为何被称之为
胶水
语言
...
1、服务器端编程,具有丰富的Web开发框架,如Django和TurboGears,快速完成一个网站的开发和Web服务。典...
赞
踩
相关标签
html
mybatis
uni-app
笔记
hadoop
机器学习
python
算法
java
后端
学习
无人机
物联网
3GPP
5G
AIGC
AI作画
人工智能
编程语言
大数据
深度学习
推荐系统
爬虫
linux
驱动开发