赞
踩
随着人工智能技术的飞速发展,大模型技术以其卓越的性能和广泛的应用前景,正在重塑人工智能领域的新格局。然而,任何技术都有两面性,大模型在带来前所未有便利的同时,也引发了深刻的安全和伦理挑战。
大模型,作为深度学习领域的杰出代表,通过海量数据的训练,拥有了惊人的语言理解、图像识别等能力,极大地推动了人工智能技术在各个领域的创新应用。然而,这一技术的强大能力同时也带来了潜在的威胁。从个人隐私泄露到虚假信息生成,再到对抗样本攻击,大模型及其衍生的安全风险不容忽视。
在数字化时代,数据安全与隐私保护已成为人们关注的焦点。大模型在处理海量数据的过程中,不可避免地会涉及到用户的个人信息。如何确保这些信息的安全,防止数据泄露和滥用,成为我们必须面对的重要问题。
此外,大模型的强大能力也可能被恶意利用。一旦不法分子掌握了这项技术,他们就能够利用大模型生成虚假信息,进行网络攻击和社会工程,对国家安全、社会稳定和个人权益造成威胁。
在此背景下,各国政府和相关机构纷纷加强了对大模型行业的监管。我国以《网络安全法》《数据安全法》以及《个人信息保护法》为基础,结合《生成式人工智能服务管理暂行办法》等规定,构建了一套相对完善的大模型监管体系。然而,面对日新月异的技术发展和复杂多变的安全形势,我们仍需不断加强研究、完善制度、提升能力,确保大模型技术的健康、可持续发展。
因此,探讨大模型安全问题的紧迫性和重要性不言而喻。网宿科技期待通过各方的共同努力,为大模型技术的发展保驾护航,让其在推动科技进步、服务人类社会的道路上走得更远、更稳。
在本章节,我们将基于网宿大模型的安全实践经验,从数据安全与隐私问题、模型流转/部署过程中的安全问题、AIGC的内容合规问题以及大模型运营过程中的业务安全问题四个方向,详细解读相关的安全挑战。
大模型在训练过程中需要大量的数据作为支撑,这些数据往往包含用户的敏感信息。一旦这些数据被恶意利用或泄露,将带来严重的后果。数据安全与隐私问题的挑战主要体现在以下几个方面:
大模型在流转和部署过程中也面临着诸多安全问题。这些问题主要包括对抗攻击、后门攻击和prompt攻击等。
AIGC(AIGeneratedContent)是指由人工智能生成的内容。随着大模型在内容生成领域的广泛应用,AIGC的内容合规问题也日益凸显。这些问题主要包括版权侵权、虚假信息、低俗内容等。
大模型在运营过程中也面临着业务安全问题的挑战。这些问题主要包括数据投毒、模型误用和滥用等。
综上所述,大模型应用面临着多方面的安全挑战和威胁。为了保障大模型的安全性和可靠性,我们需要加强技术研发、完善法律法规、加强监管和教育宣传等方面的工作。只有这样,我们才能充分发挥大模型在推动科技进步和社会发展中的积极作用。
如前文所述,大模型应用面临安全挑战和威胁,对个人隐私保护、社会伦理和系统安全产生巨大的挑战,因此对大模型的内容安全性进行评估和改进显得尤为重要,网宿科技安全评估方案以国家网信办《生成式人工智能服务管理暂行办法》和网安标委《生成式人工智能服务安全基本要求》为指导基础进行安全分类,针对性的生成了对应的评估内容,供大模型进行内容安全评测评估,以达到帮助大模型内容风控系统升级,促进大模型生态健康发展的目的,现将《基本要求》解读如下:
《办法》第十五条明确规定,服务提供者应建立健全投诉、举报机制。
为维护服务稳定性,《要求》建议服务提供者采取安全措施。例如隔离训练与推理环境,防止数据泄露和不当访问。持续监测模型输入内容,预防恶意攻击。定期安全审计,识别和修复安全漏洞。建立数据、模型备份和恢复策略。
为确保评估工作的可操作性,《要求》特别针对语料安全、生成内容安全、问题拒答等方面提出了量化的评估标准,具体要求请见下表。
OWASP组织在2023年10月16日发布了LLM(大型语言模型)十大安全风险1.1版本,概述了针对LLM的潜在攻击方式、预防措施和攻击场景,可以帮助读者更好的理解LLM所面临的安全风险以及应对策略。
大模型应用正面临严峻的安全挑战和威胁,包括数据隐私泄露、网络攻击、注入漏洞等。全国网络安全标准化技术委员会发布的《生成式人工智能服务安全基本要求》为行业提供了明确的安全指引,要求服务提供者加强语料安全、模型安全等方面的管理。网宿科技作为网络安全领域的领军企业,积极应对大模型带来的安全风险。同时,借鉴OWASP大模型TOP10安全风险清单,网宿科技致力于提升大模型应用的安全性,保护用户数据安全,为大模型的健康发展提供有力保障。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。