赞
踩
➢ pull (拉) 模式 :
consumer采用从broker中主动拉取数据。Kafka采用这种方式
➢ push (推) 模式:
Kafka没有采用这种方式,因为由 broker 决定消息发送速率,很难适应所有消费者的消费速率。例如推送的速度是 50m/s,Consumer1、Consumer2 就来不及处理消息。
pull模式不足之处是,如果Kafka没有数据,消费者可能会陷入循环中,一直返回空数据。
Kafka 消费者总体工作流程
Consumer Group(CG):消费者组,由多个consumer组成。形成一个消费者组的条件,是所有消费者的 groupid 相同。
• 消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费。
• 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
• 如果向消费组中添加更多的消费者,超过主题分区数量,则有一部分消费者就会闲置,不会接收任何消息。
• 消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
消费者组初始化流程
1、coordinator:辅助实现消费者组的初始化和分区的分配。coordinator 节点选择 = groupid 的hashcode值 % 50( __consumer_offsets的分区数量)
例如: groupid的 hashcode 值 = 1,1% 50 = 1,那么 __consumer_offsets 主题的1号分区,在哪个 broker 上,就选择这个节点的 coordinator 作为这个消费者组的老大。消费者组下的所有的消费者提交 offset 的时候就往这个分区去提交 offset。
参数名称 | 描述 |
---|---|
bootstrap.servers | 向 Kafka 集群建立初始连接用到的 host/port 列表。 |
key.deserializer 和 value.deserializer | 指定接收消息的 key 和 value 的反序列化类型。一定要写全类名。 |
group.id | 标记消费者所属的消费者组。 |
enable.auto.commit | 默认值为 true,消费者会自动周期性地向服务器提交偏移量。 |
auto.commit.interval.ms | 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。 |
auto.offset.reset | 当 Kafka 中没有初始偏移量或当前偏移量在服务器中不存在 (如,数据被删除了),该如何处理? earliest:自动重置偏移量到最早的偏移量。 latest:默认,自动重置偏移量为最新的偏移量。 none:如果消费组原来的(previous)偏移量不存在,则向消费者抛异常。 anything:向消费者抛异常。 |
offsets.topic.num.partitions | __consumer_offsets 的分区数,默认是 50 个分区。 |
heartbeat.interval.ms | Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。该条目的值必须小于session.timeout.ms , 也不应该高于session.timeout.ms 的 1/3。 |
session.timeout.ms | Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡。 |
max.poll.interval.ms | 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡。 |
fetch.min.bytes | 默认 1 个字节。消费者获取服务器端一批消息最小的字节数。 |
fetch.max.wait.ms | 默认 500ms。如果没有从服务器端获取到一批数据的最小字节数。该时间到,仍然会返回数据。 |
fetch.max.bytes | 默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值 。 一批次的大小受 message.max.bytes (brokerconfig)or max.message.bytes (topic config)影响。 |
max.poll.records | 一次 poll 拉取数据返回消息的最大条数,默认是 500 条。 |
需求:
创建一个独立消费者,消费 first 主题中数据
注意:在消费者 API 代码中必须配置消费者组 id。命令行启动消费者不填写消费者组 id 会被自动填写随机的消费者组 id。
实现步骤:
A、创建包名:com.fancyry.kafka.consumer
B、编写代码
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.time.Duration; import java.util.ArrayList; import java.util.Properties; public class CustomConsumer { public static void main(String[] args) { // 1.创建消费者的配置对象 Properties properties = new Properties(); // 2.给消费者配置对象添加参数 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 配置消费者组(组名任意起名) 必须 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); // 创建消费者对象 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties); // 注册要消费的主题(可以消费多个主题) ArrayList<String> topics = new ArrayList<>(); topics.add("first"); kafkaConsumer.subscribe(topics); // 拉取数据打印 while (true) { // 设置 1s 中消费一批数据 ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1)); // 打印消费到的数据 for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord); } } } }
测试
A、在 IDEA 中执行消费者程序。
B、在 Kafka 集群控制台,创建 Kafka 生产者,并输入数据。
[fancy@hadoop102 kafka]$ bin/kafka-console-producer.sh --
bootstrap-server hadoop102:9092 --topic first
>hello
C、在 IDEA 控制台观察接收到的数据。
ConsumerRecord(topic = first, partition = 1, leaderEpoch = 3, offset = 0, CreateTime = 1629160841112, serialized key size = -1,
serialized value size = 5, headers = RecordHeaders(headers = [],isReadOnly = false), key = null, value = hello)
需求: 创建一个独立消费者,消费 first 主题 0 号分区的数据。
实现步骤
A、代码编写
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.TopicPartition; import java.time.Duration; import java.util.ArrayList; import java.util.Arrays; import java.util.Properties; public class CustomConsumerPartition { public static void main(String[] args) { Properties properties = new Properties(); properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 配置消费者组(必须),名字可以任意起 properties.put(ConsumerConfig.GROUP_ID_CONFIG,"test"); KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties); // 消费某个主题的某个分区数据 ArrayList<TopicPartition> topicPartitions = new ArrayList<>(); topicPartitions.add(new TopicPartition("first", 0)); kafkaConsumer.assign(topicPartitions); while (true){ ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1)); for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord); } } } }
测试
A、在 IDEA 中执行消费者程序。
B、在 IDEA 中执行生产者程序 CustomProducerCallback()在控制台观察生成几个 0 号分区的数据。
first 0 381
first 0 382
first 2 168
first 1 165
first 1 166
C、在 IDEA 控制台,观察接收到的数据,只能消费到 0 号分区数据表示正确。
ConsumerRecord(topic = first, partition = 0, leaderEpoch = 14, offset = 381, CreateTime = 1636791331386, serialized key size = -1, serialized value size = 9, headers = RecordHeaders(headers =[], isReadOnly = false), key = null, value = fancyry 0)
ConsumerRecord(topic = first, partition = 0, leaderEpoch = 14, offset = 382, CreateTime = 1636791331397, serialized key size = -1, serialized value size = 9, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = fancyry 1)
**需求:**测试同一个主题的分区数据,只能由一个消费者组中的一个消费。
案例实操
A、复制一份基础消费者的代码,在 IDEA 中同时启动,即可启动同一个消费者组中的两个消费者。
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.time.Duration; import java.util.ArrayList; import java.util.Properties; public class CustomConsumer1 { public static void main(String[] args) { // 1.创建消费者的配置对象 Properties properties = new Properties(); // 2.给消费者配置对象添加参数 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); // 配置消费者组 必须 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); // 创建消费者对象 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(properties); // 注册主题 ArrayList<String> topics = new ArrayList<>(); topics.add("first"); kafkaConsumer.subscribe(topics); // 拉取数据打印 while (true) { // 设置 1s 中消费一批数据 ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1)); // 打印消费到的数据 for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord); } } } }
B、启动代码中的生产者发送消息,在 IDEA 控制台即可看到两个消费者在消费不同分区的数据(如果只发生到一个分区,可以在发送时增加延迟代码 Thread.sleep(2);
)。
ConsumerRecord(topic = first, partition = 0, leaderEpoch = 2, offset = 3, CreateTime = 1629169606820, serialized key size = -1, serialized value size = 8, headers = RecordHeaders(headers = [],isReadOnly = false), key = null, value = hello1)
ConsumerRecord(topic = first, partition = 1, leaderEpoch = 3, offset = 2, CreateTime = 1629169609524, serialized key size = -1, serialized value size = 6, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = hello2)
ConsumerRecord(topic = first, partition = 2, leaderEpoch = 3, offset = 21, CreateTime = 1629169611884, serialized key size = -1, serialized value size = 6, headers = RecordHeaders(headers = [], isReadOnly = false), key = null, value = hello3)
C、重新发送到一个全新的主题中,由于默认创建的主题分区数为 1,可以看到只能有一个消费者消费到数据。
1、一个c onsumer group 中有多个 consumer 组成,一个 topic 有多个 partition 组成,现在的问题是,到底由哪个 consumer 来消费哪个 partition 的数据。
2、Kafka有四种主流的分区分配策略: Range、RoundRobin、Sticky、CooperativeSticky。
可以通过配置参数 partition.assignment.strategy,修改分区的分配策略。默认策略是 Range + CooperativeSticky。Kafka可 以同时使用多个分区分配策略。
参数名称 | 描述 |
---|---|
heartbeat.interval.ms | Kafka 消费者和 coordinator 之间的心跳时间,默认 3s。该条目的值必须小于 session.timeout.ms , 也 不 应 该 高 于 session.timeout.ms 的 1/3。 |
session.timeout.ms | Kafka 消费者和 coordinator 之间连接超时时间,默认 45s。超过该值,该消费者被移除,消费者组执行再平衡。 |
max.poll.interval.ms | 消费者处理消息的最大时长,默认是 5 分钟。超过该值,该消费者被移除,消费者组执行再平衡。 |
partition.assignment.strategy | 消费者分区分配策略,默认策略是 Range + CooperativeSticky。Kafka 可以同时使用多个分区分配策略。可以选择的策略包括 :Range 、 RoundRobin 、 Sticky 、CooperativeSticky |
Range 分区策略原理
Range 是对每个 topic 而言的。首先对同一个 topic 里面的分区按照序号进行排序,并
对消费者按照字母顺序进行排序。
假如现在有 7 个分区,3 个消费者,排序后的分区将会是0,1,2,3,4,5,6;消费者排序完之后将会是C0,C1,C2。
通过 partitions数/consumer数 来决定每个消费者应该消费几个分区。如果除不尽,那么前面几个消费者将会多消费 1 个分区。
例如,7/3 = 2 余 1 ,除不尽,那么 消费者 C0 便会多消费 1 个分区。 8/3=2余2,除不尽,那么C0和C1分别多消费一个。
注意:如果只是针对 1 个 topic 而言,C0消费者多消费1个分区影响不是很大。但是如果有 N 多个 topic,那么针对每个 topic,消费者 C0都将多消费 1 个分区,topic越多,C0消费的分区会比其他消费者明显多消费 N 个分区。容易产生数据倾斜
Range 分区分配策略案例
A、修改主题 first 为 7 个分区。
[fancyry@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --alter --topic first --partitions 7
注意:分区数可以增加,但是不能减少。
B、复制 CustomConsumer 类,创建 CustomConsumer2。这样可以由三个消费者CustomConsumer、CustomConsumer1、CustomConsumer2 组成消费者组,组名都为“test”,
同时启动 3 个消费者。
C、启动 CustomProducer 生产者,发送 500 条消息,随机发送到不同的分区。
package com.fancy.kafka.producer; import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.ProducerConfig; import org.apache.kafka.clients.producer.ProducerRecord; import java.util.Properties; public class CustomProducer { public static void main(String[] args) throws InterruptedException { Properties properties = new Properties(); properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); KafkaProducer<String, String> kafkaProducer = new KafkaProducer<>(properties); for (int i = 0; i < 7; i++) { kafkaProducer.send(new ProducerRecord<>("first", i, "test", "fancy")); } kafkaProducer.close(); } }
说明:Kafka 默认的分区分配策略就是 Range + CooperativeSticky,所以不需要修改策略。
D、观看 3 个消费者分别消费哪些分区的数据。
Range 分区分配再平衡案例
A、停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 3、4 号分区数据。
2 号消费者:消费到 5、6 号分区数据。
0 号消费者的任务会整体被分配到 1 号消费者或者 2 号消费者。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
B、再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、1、2、3 号分区数据。
2 号消费者:消费到 4、5、6 号分区数据。
说明:消费者 0 已经被踢出消费者组,所以重新按照 range 方式分配。
RoundRobin 分区策略原理
RoundRobin 针对集群中所有Topic而言。
RoundRobin 轮询分区策略,是把所有的 partition 和所有的consumer 都列出来,然后按照 hashcode 进行排序,最后通过轮询算法来分配 partition 给到各个消费者。
RoundRobin 分区分配策略案例
A、依次在 CustomConsumer、CustomConsumer1、CustomConsumer2 三个消费者代码中修改分区分配策略为 RoundRobin。
// 修改分区分配策略
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, "org.apache.kafka.clients.consumer.RoundRobinAssignor");
B、重启 3 个消费者,重复发送消息的步骤,观看分区结果。
RoundRobin 分区分配再平衡案例
A、停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 2、5 号分区数据
2 号消费者:消费到 4、1 号分区数据
0 号消费者的任务会按照 RoundRobin 的方式,把数据轮询分成 0 、6 和 3 号分区数据,分别由 1 号消费者或者 2 号消费者消费。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
B、再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 0、2、4、6 号分区数据
2 号消费者:消费到 1、3、5 号分区数据
说明:消费者 0 已经被踢出消费者组,所以重新按照 RoundRobin 方式分配。
粘性分区定义:可以理解为分配的结果带有“粘性的”。即在执行一次新的分配之前,考虑上一次分配的结果,尽量少的调整分配的变动,可以节省大量的开销。
粘性分区是 Kafka 从 0.11.x 版本开始引入这种分配策略,首先会尽量均衡的放置分区到消费者上面,在出现同一消费者组内消费者出现问题的时候,会尽量保持原有分配的分区不变化。
需求
设置主题为 first,7 个分区;准备 3 个消费者,采用粘性分区策略,并进行消费,观察消费分配情况。然后再停止其中一个消费者,再次观察消费分配情况。
步骤
A、修改分区分配策略为粘性。
注意:3 个消费者都应该注释掉,之后重启 3 个消费者,如果出现报错,全部停止等会再重启,或者修改为全新的消费者组。
// 修改分区分配策略
ArrayList<String> startegys = new ArrayList<>();
startegys.add("org.apache.kafka.clients.consumer.StickyAssignor");
properties.put(ConsumerConfig.PARTITION_ASSIGNMENT_STRATEGY_CONFIG, startegys);
B、使用同样的生产者发送 500 条消息。
可以看到会尽量保持分区的个数近似划分分区。
Sticky 分区分配再平衡案例
A、停止掉 0 号消费者,快速重新发送消息观看结果(45s 以内,越快越好)。
1 号消费者:消费到 2、5、3 号分区数据。
2 号消费者:消费到 4、6 号分区数据。
0 号消费者的任务会按照粘性规则,尽可能均衡的随机分成 0 和 1 号分区数据,分别由 1 号消费者或者 2 号消费者消费。
说明:0 号消费者挂掉后,消费者组需要按照超时时间 45s 来判断它是否退出,所以需要等待,时间到了 45s 后,判断它真的退出就会把任务分配给其他 broker 执行。
B、再次重新发送消息观看结果(45s 以后)。
1 号消费者:消费到 2、3、5 号分区数据。
2 号消费者:消费到 0、1、4、6 号分区数据
说明:消费者 0 已经被踢出消费者组,所以重新按照粘性方式分配。
__consumer_offsets 主题里面采用 key 和 value 的方式存储数据。key 是 group.id+topic+
分区号,value 就是当前 offset 的值。每隔一段时间,kafka 内部会对这个 topic 进行 compact,也就是每个 group.id+topic+分区号就保留最新数据。
消费 offset 案例
A、思想:__consumer_offsets 为 Kafka 中的 topic,那就可以通过消费者进行消费。
B、在配置文件 config/consumer.properties 中添加配置 exclude.internal.topics=false,默认是 true,表示不能消费系统主题。为了查看该系统主题数据,所以该参数修改为 false。
C、采用命令行方式,创建一个新的 topic。
[fancyry@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server hadoop102:9092 --create --topic atguigu --partitions 2 --replication-factor 2
D、启动生产者往 fancy 生产数据。
[fancyry@hadoop102 kafka]$ bin/kafka-console-producer.sh --topic fancy --bootstrap-server hadoop102:9092
E、启动消费者消费 fancy 数据。
[fancy@hadoop104 kafka]$ bin/kafka-console-consumer.sh -- bootstrap-server hadoop102:9092 --topic fancy --group test
注意:指定消费者组名称,更好观察数据存储位置(key 是 group.id+topic+分区号)。
F、查看消费者消费主题__consumer_offsets。
[fancyry@hadoop102 kafka]$ bin/kafka-console-consumer.sh --topic __consumer_offsets --bootstrap-server hadoop102:9092 --consumer.config config/consumer.properties --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter" --from-beginning
[offset,fancy,1]::OffsetAndMetadata(offset=7, leaderEpoch=Optional[0], metadata=, commitTimestamp=1622442520203,expireTimestamp=None)
[offset,fancy,0]::OffsetAndMetadata(offset=8,leaderEpoch=Optional[0], metadata=, commitTimestamp=1622442520203,expireTimestamp=None)
为了使我们能够专注于自己的业务逻辑,Kafka提供了自动提交offset的功能。
自动提交 offset 的相关参数:
参数名称 | 描述 |
---|---|
enable.auto.commit | 默认值为 true,消费者会自动周期性地向服务器提交偏移量。 |
auto.commit.interval.ms | 如果设置了 enable.auto.commit 的值为 true, 则该值定义了消费者偏移量向 Kafka 提交的频率,默认 5s。 |
消费者自动提交 offset
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class CustomConsumerAutoOffset { public static void main(String[] args) { // 1. 创建 kafka 消费者配置类 Properties properties = new Properties(); // 2. 添加配置参数 // 添加连接 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); // 配置消费者组 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); // 是否自动提交 offset properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG,true); // 提交 offset 的时间周期 1000ms,默认 5s properties.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 1000); //3. 创建 kafka 消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties); //4. 设置消费主题 形参是列表 consumer.subscribe(Arrays.asList("first")); //5. 消费数据 while (true){ // 读取消息 ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1)); // 输出消息 for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord.value()); } } } }
虽然自动提交 offset 十分简单便利,但由于其是基于时间提交的,开发人员难以把握 offset 提交的时机。因此 Kafka 还提供了手动提交 offset 的 API。
手动提交offset的方法有两种:分别是 commitSync(同步提交)和 commitAsync(异步提交)。两者的相同点是,都会将本次提交的一批数据最高的偏移量提交;不同点是,同步提交阻塞当前线程,一直到提交成功,并且会自动失败重试(由不可控因素导致,也会出现提交失败);而异步提交则没有失败重试机制,故有可能提交失败。
• commitSync(同步提交):必须等待offset提交完毕,再去消费下一批数据。
• commitAsync(异步提交) :发送完提交offset请求后,就开始消费下一批数据了。
同步提交 offset
由于同步提交 offset 有失败重试机制,故更加可靠,但是由于一直等待提交结果,提交的效率比较低。以下为同步提交 offset 的示例。
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays; import java.util.Properties; public class CustomConsumerByHandSync { public static void main(String[] args) { // 1. 创建 kafka 消费者配置类 Properties properties = new Properties(); // 2. 添加配置参数 // 添加连接 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); // 配置消费者组 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); // 是否自动提交 offset properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false); //3. 创建 kafka 消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties); //4. 设置消费主题 形参是列表 consumer.subscribe(Arrays.asList("first")); //5. 消费数据 while (true){ // 读取消息 ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1)); // 输出消息 for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord.value()); } // 同步提交 offset consumer.commitSync(); } } }
异步提交 offset
虽然同步提交 offset 更可靠一些,但是由于其会阻塞当前线程,直到提交成功。因此吞吐量会受到很大的影响。因此更多的情况下,会选用异步提交 offset 的方式。
以下为异步提交 offset 的示例:
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.*; import org.apache.kafka.common.TopicPartition; import java.util.Arrays; import java.util.Map; import java.util.Properties; public class CustomConsumerByHandAsync { public static void main(String[] args) { // 1. 创建 kafka 消费者配置类 Properties properties = new Properties(); // 2. 添加配置参数 // 添加连接 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // 配置序列化 必须 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer"); // 配置消费者组 properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test"); // 是否自动提交 offset properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false"); //3. 创建 Kafka 消费者 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties); //4. 设置消费主题 形参是列表 consumer.subscribe(Arrays.asList("first")); //5. 消费数据 while (true){ // 读取消息 ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofSeconds(1)); // 输出消息 for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord.value()); } // 异步提交 offset consumer.commitAsync(); } } }
auto.offset.reset = earliest | latest | none
默认是 latest。
当 Kafka 中没有初始偏移量(消费者组第一次消费)或服务器上不再存在当前偏移量时 (例如该数据已被删除),该怎么办?
A、earliest:自动将偏移量重置为最早的偏移量,–from-beginning。
B、latest (默认值):自动将偏移量重置为最新偏移量。
C、none:如果未找到消费者组的先前偏移量,则向消费者抛出异常。
D、任意指定 offset 位移开始消费
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.TopicPartition; import org.apache.kafka.common.serialization.StringDeserializer; import java.time.Duration; import java.util.ArrayList; import java.util.HashSet; import java.util.Properties; import java.util.Set; public class CustomConsumerSeek { public static void main(String[] args) { // 0 配置信息 Properties properties = new Properties(); // 连接 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // key value 反序列化 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2"); // 1 创建一个消费者 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties); // 2 订阅一个主题 ArrayList<String> topics = new ArrayList<>(); topics.add("first"); kafkaConsumer.subscribe(topics); Set<TopicPartition> assignment= new HashSet<>(); while (assignment.size() == 0) { kafkaConsumer.poll(Duration.ofSeconds(1)); // 获取消费者分区分配信息(有了分区分配信息才能开始消费) assignment = kafkaConsumer.assignment(); } // 遍历所有分区,并指定 offset 从 1700 的位置开始消费 for (TopicPartition tp: assignment) { kafkaConsumer.seek(tp, 1700); } // 3 消费该主题数据 while (true) { ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1)); for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord); } } } }
注意:每次执行完,需要修改消费者组名;
需求:在生产环境中,会遇到最近消费的几个小时数据异常,想重新按照时间消费。
例如要求按照时间消费前一天的数据,怎么处理?
操作步骤:
package com.fancy.kafka.consumer; import org.apache.kafka.clients.consumer.*; import org.apache.kafka.common.TopicPartition; import org.apache.kafka.common.serialization.StringDeserializer; import java.time.Duration; import java.util.*; public class CustomConsumerForTime { public static void main(String[] args) { // 0 配置信息 roperties properties = new Properties(); // 连接 properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092"); // key value 反序列化 properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName()); properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test2"); // 1 创建一个消费者 KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties); // 2 订阅一个主题 ArrayList<String> topics = new ArrayList<>(); topics.add("first"); kafkaConsumer.subscribe(topics); Set<TopicPartition> assignment = new HashSet<>(); while (assignment.size() == 0) { kafkaConsumer.poll(Duration.ofSeconds(1)); // 获取消费者分区分配信息(有了分区分配信息才能开始消费) assignment = kafkaConsumer.assignment(); } HashMap<TopicPartition, Long> timestampToSearch = new HashMap<>(); // 封装集合存储,每个分区对应一天前的数据 for (TopicPartition topicPartition : assignment) { timestampToSearch.put(topicPartition, System.currentTimeMillis() - 1 * 24 * 3600 * 1000); } // 获取从 1 天前开始消费的每个分区的 offset Map<TopicPartition, OffsetAndTimestamp> offsets = kafkaConsumer.offsetsForTimes(timestampToSearch); // 遍历每个分区,对每个分区设置消费时间。 for (TopicPartition topicPartition : assignment) { OffsetAndTimestamp offsetAndTimestamp = offsets.get(topicPartition); // 根据时间指定开始消费的位置 if (offsetAndTimestamp != null){ kafkaConsumer.seek(topicPartition, offsetAndTimestamp.offset()); } } // 3 消费该主题数据 while (true) { ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(Duration.ofSeconds(1)); for (ConsumerRecord<String, String> consumerRecord : consumerRecords) { System.out.println(consumerRecord); } } } }
重复消费:已经消费了数据,但是 offset 没提交。
漏消费:先提交 offset 后消费,有可能会造成数据的漏消费
场景1:重复消费。自动提交offset引起。
场景2:漏消费。设置 offset 为手动提交,当 offset 被提交时,数据还在内存中未落盘,此时刚好消费者线程被 kill 掉,那么 offset 已经提交,但是数据未处理,导致这部分内存中的数据丢失。
如果想完成 Consumer 端的精准一次性消费,那么需要Kafka消费端将消费过程和提交 offset 过程做原子绑定 。 此时我们需要将 Kafka 的 offset 保存到支持事务的自定义介质 (比 如MySQL)。这部分知识会在后续项目部分涉及。
– 消费者如何提高吞吐量
如果是Kafka消费能力不足,则可以考虑增加Topic的分区数,并且同时提升消费组的消费者数量,消费者数 = 分区数。(两者缺一不可)
如果是下游的数据处理不及时:提高每批次拉取的数量。批次拉取数据过少(拉取数据/处理时间 < 生产速度),使处理的数据小于生产的数据,也会造成数据积压。
参数名称 | 描述 |
---|---|
fetch.max.bytes | 默认 Default: 52428800(50 m)。消费者获取服务器端一批消息最大的字节数。如果服务器端一批次的数据大于该值(50m)仍然可以拉取回来这批数据,因此,这不是一个绝对最大值。一批次的大小受 message.max.bytes (brokerconfig) or max.message.bytes (topic config) 影响。 |
max.poll.records | 一次 poll 拉取数据返回消息的最大条数,默认是 500 条 |
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。