赞
踩
问题:把遥感影像转为一张表。
现有一全球经济作物数据alfalfa的产量。
alfalfa是一种亚洲西南部多年生草本植物,是重要的经济作物。在图中也可以看到,主要分布在热带和南美洲。
我们想把影像转表,即经纬度、栅格值(苜蓿产量)
上述功能在ArcGIS中是这样实现的。
对于我上述全球影像来说,栅格转点需要6分钟。添加字段和计算几何都需要花费更多的时间。
采用python的gdal方法,首先进行影像裁剪。直接上代码:
dataset = gdal.Open("D:/work/0318/Suitability Raster files/Suitability Raster files/High input/high_banana_plaintain.tif")
output_raster=r'D:/work/0318/Suitability Raster files/Suitability Raster files/High_mask/high_banana_plaintain_mask.tif'
input_shape = r'D:/work/0318/shp/Africa.shp'
# 开始裁剪
ds = gdal.Warp(output_raster,
dataset,
format = 'GTiff',
cutlineDSName = input_shape,
cutlineWhere="FIELD = 'whatever'",
dstNodata = -90)
这里我设置nodata为负值,是我本来影像的nodata值,可以在GIS查看
然后再进行统计:
import time from osgeo import gdal import numpy as np import pandas as pd import os def rasterToPoints(rasterfile, nodata=None, v_name=None): """ :param rasterfile: 待执行栅格转点的栅格文件 :param nodata:栅格中的无数据值,默认取栅格的最小值 :param v_name:导出表格中栅格值所在列的名称,默认为栅格的文件名 :return:x、y、value """ # numpy禁用科学计数法,pandas中存储浮点型时只保留四位小数 np.set_printoptions(suppress=True) pd.set_option('display.float_format', lambda x: '%.4f' % x) rds = gdal.Open(rasterfile) # type:gdal.Dataset if rds.RasterCount != 1: print("Warning, RasterCount > 1") cols = rds.RasterXSize rows = rds.RasterYSize band = rds.GetRasterBand(1) # type:gdal.Band transform = rds.GetGeoTransform() print(transform) x_origin = transform[0] y_origin = transform[3] pixel_width = transform[1] pixel_height = transform[5] if (pixel_height + pixel_width) != 0: print("Warning, pixelWidth != pixelHeight") # 读取栅格 values = np.array(band.ReadAsArray()) x = np.arange(x_origin + pixel_width * 0.5, x_origin + (cols + 0.5) * pixel_width, pixel_width) y = np.arange(y_origin + pixel_height*0.5, y_origin + (rows+0.5) * pixel_height, pixel_height) px, py = np.meshgrid(x, y) if v_name is None: v_name = os.path.splitext(os.path.split(rasterfile)[1])[0] dataset = {"x": px.ravel(), "y": py.ravel(), v_name: values.ravel()} df_temp = pd.DataFrame(dataset, dtype="float32") # 删除缺失值 if nodata is None: nodata = df_temp[v_name].min() df_temp = df_temp[df_temp[v_name] != nodata] else: df_temp = df_temp[df_temp[v_name] != nodata] df_temp.index = range(len(df_temp)) return df_temp if __name__ == "__main__": # 禁用科学计数法 np.set_printoptions(suppress=True) pd.set_option('display.float_format', lambda x: '%.4f' % x) # 执行栅格转点,并计时 s = time.time() # in_tif是输入栅格,刚才裁剪的结果 in_tif = r"D:/work/0318/Suitability Raster files/Suitability Raster files/High_mask/high_banana_plaintain_mask.tif" outfile = rasterToPoints(in_tif, v_name="high_banana_plaintain") # v_name是你自己定义的栅格字段列名称 outfile.to_csv("high_banana_plaintain.csv") # 导出csv文件 e = time.time() print("time used {0}s".format(e-s))
成功了。
看看统计结果
cs = pd.read_csv('high_banana_plaintain.csv')
cs
Unnamed: 0 | x | y | high_banana_plaintain | |
---|---|---|---|---|
0 | 0 | 9.3750 | 37.2917 | 0.0000 |
1 | 1 | 9.4583 | 37.2917 | 0.0000 |
2 | 2 | 9.5417 | 37.2917 | 0.0000 |
3 | 3 | 9.6250 | 37.2917 | 0.0000 |
4 | 4 | 9.7083 | 37.2917 | 0.0000 |
… | … | … | … | … |
360807 | 360807 | 19.7083 | -34.7917 | 0.0000 |
360808 | 360808 | 19.7917 | -34.7917 | 0.0000 |
360809 | 360809 | 19.8750 | -34.7917 | 0.0000 |
360810 | 360810 | 19.9583 | -34.7917 | 0.0000 |
360811 | 360811 | 20.0417 | -34.7917 | 0.0000 |
360812 rows × 4 columns
很完美。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。