赞
踩
给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
思路:1.动态规划,利用回文子串的特性设置二维数组 2.双指针法
动规五部曲:
1.确定dp数组(dp table)以及下标的含义
如果我们定义dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。
所以我们要看回文串的性质。 如图:
我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。
那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。
所以为了明确这种递归关系,我们的dp数组是要定义成二维dp数组。
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2.确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
以上三种情况分析完了,那么递归公式如下:
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}
result就是统计回文子串的数量。
注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
3.dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
4.确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。
代码实现1:
class Solution { public: int countSubstrings(string s) { vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); int result = 0; for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序 for (int j = i; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i <= 1) { // 情况一 和 情况二 result++; dp[i][j] = true; } else if (dp[i + 1][j - 1]) { // 情况三 result++; dp[i][j] = true; } } } } return result; } };
代码实现2(简洁版):
class Solution { public: int countSubstrings(string s) { vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false)); int result = 0; for (int i = s.size() - 1; i >= 0; i--) { for (int j = i; j < s.size(); j++) { if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) { result++; dp[i][j] = true; } } } return result; } };
动态规划的空间复杂度是偏高的,我们再看一下双指针法。
首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。
在遍历中心点的时候,要注意中心点有两种情况。
一个元素可以作为中心点,两个元素也可以作为中心点。
这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:
代码实现3(双指针法):
class Solution { public: int countSubstrings(string s) { int result = 0; for (int i = 0; i < s.size(); i++) { result += extend(s, i, i, s.size()); // 以i为中心 result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心 } return result; } int extend(const string& s, int i, int j, int n) { int res = 0; while (i >= 0 && j < n && s[i] == s[j]) { i--; j++; res++; } return res; } };
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
思路:动态规划法,设置二维数组找好递推关系即可
代码实现:
class Solution { public: int longestPalindromeSubseq(string s) { vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0)); for (int i = 0; i < s.size(); i++) dp[i][i] = 1; for (int i = s.size() - 1; i >= 0; i--) { for (int j = i + 1; j < s.size(); j++) { if (s[i] == s[j]) { if (j - i == 1) dp[i][j] = 2; else dp[i][j] = dp[i + 1][j - 1] + 2; } else { dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); } } } return dp[0][s.size() - 1]; } };
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。