当前位置:   article > 正文

网友缝合Llama3 120B竟意外能打,轻松击败GPT2-chatbot和GPT-4

网友缝合Llama3 120B竟意外能打,轻松击败GPT2-chatbot和GPT-4
白交 发自 凹非寺
量子位 | 公众号 QbitAI

Llama 3首发阵容里没有的120B型号竟意外“曝光”,而且十分能打?!

最近这样一个号称是「Llama3-120b」的神秘大模型火了起来,原因在于它表现太出色了——

轻松击败GPT-4、gpt2-chatbot那种。

比如,面对像「观察希格斯场是否会改变其状态」这样的艰深难题时。

GPT-4冷酷而决绝:No;

但Llama3-120b就不一样了,“只有当我们质疑量子力学的哥本哈根解释时,让我来解释一下……”

dec07b5a5e8219a908a1661b12c13201.png

还有就是让LIama3-120B解释笑话,并同两个gpt2-chatbot比较:im-a-good-gpt2-chatbot;im-also-a-good-gpt2-chatbot。

I randomly walked past the grave of bayes yesterday, but being a frequentist i didn’t bother taking a photo。

(昨天我偶然路过贝叶斯墓,但我是频率学派,懒得拍照。)

首先,他们三个都判断出这是关于两种统计学派的笑话,以及两个学派是相对对立的情况:
Frequentist频率学派只关注从抽样/实验的结果中提取信息,Bayesian贝叶斯学派还会设置一个主观的先验信息。

但两个gpt2-chatbot给出进一步解释是,正是因为频率学派并不认同对贝叶斯理论,所以对贝叶斯墓不感兴趣,更不会以他为荣而拍照。

ee7f99b4e5a5df44f43b19ba945209a1.png

而LIama3-120B精准指出笑点在“ i didn’t bother taking a photo”,并给出了更深一层的解释。

因为作为频率学派,会认为碰到贝叶斯墓的概率几乎为零。这样的小概率事件也不值得去拍照或者干一些有意义的事情。

4593bdba650cce729ec83cc52654d79a.png

哦莫,说的好有道理……

8587a3d96fcf3485c0ba7186a8b75d17.gif

另外题外话,它的回答格式十分工整,让人看了赏心悦目。

除此之外,网友发现它还能创造出谷歌搜到0结果的新单词。

以及直接回答含糊的问题,不用交代背景,这不比ChatGPT好多了。

(没有说ChatGPT不好的意思)

有评测过后的网友感叹:它太聪明了,我不会再摆弄它了。因为它有自己的想法

896fe5e38553517d57931224094faa43.png

这真的是我用过最聪明的大模型了。

f491f33a1bb6f730f682b6e285b1362b.png

有网友找了半天也找不到官方来源……

afb0285ac3124e5125a30afb41e7dd86.png

与此同时,更多版本也开始出现了,比如170B、225B…嗯,一版更比一版强。

7c59821a6e151566176c8ff4475974d5.png

Llama 3 120B竟意外能打

这两天,社交网络上出现了各种关于Llama3 120B玩法。

比如推导解释一些理论,Omega假设。

7146577c1375e29adc0b57638902e796.jpeg

有创造一些新单词,比如prefaceate、driftift等

b2786e098d8414da957f9b5704701f31.png

并且给它一个完整的解释和定义。

36cc4177a3d14e11ceb04dc43dfebfeb.png

甚至还有人整了个评测,去评估这个来路不明的大模型。结果在创意写作测试中成绩还不错,排名第6,超过GPT-4、Claude3-Haiku等模型。

77ec81904f76c45bd310489d1ed9bc3f.png

既然如此,这个非官方的大模型Llama3 120B又是怎么来的呢?

据作者介绍,它是用MergeKit制作,将Meta官方LIama3 70B模型合并(Self-Merge)

MergeKit咋是专门用来合并预训练模型的工具包,合并可以完全在 CPU 上运行,也可以使用低至8GB的VRAM进行加速。在GitHub上已经收获3.6k星。

目前支持Llama、Mistral、GPT-NeoX、StableLM 等模型。

de9f4e17ba4b93714a5cdc06e6cfa389.png

支持的合并算法

作者Maxime Labonne是一位资深机器学习专家,目前在一家通用大模型创业公司LiquidAI工作。

他博士毕业于巴黎理工学院,他在2019年开始研究大语言模型和图神经网络,并将他们应用到不同环境中,比如研发、工业、金融等,撰写过书籍《Hands-On Graph Neural Networks using Python》。

cd3abfbb92df249f80bed30aedeaf97c.jpeg

他也是开发者社区的活跃开发者,在HuggingFace上发布过各种LLM, 例如AlpahMonarch-7B、Beyonder-4x7B、Phixtral 和 NeuralBeagle14。以及一些工具,例如 LLM AutoEval、LazyMergekit、LazyZxolotl 和 AutoGGUF。

在GitHub上他的关于大模型课程,收获29.5K Star。

ac9dad9b9c4486bad75529cfe425be68.png

不过对于这个「缝合」大模型的使用,作者建议可以用来创意写作。

在多方评估中可以看到,它有时候会出现神经混乱,但写作风格不错。另外有时候还会出现拼写错误,并且非常喜欢大写字母。

而且由于觉得这个版本的推理能力比较差,于是作者再做了个225B的。

b92286f2c9fae752b3853dcfd0682eca.png

网友:看完更期待官方400B了

有网友猜测为什么LIama3-120B能这么强。

一方面,LIama3-70B自己确实很强,刚发布时就迅速跃居排行榜榜首。HuggingFace上显示,上个月下载次数就超过了27万次。

995af6dd44923b82658bef004a4081a9.png

lmsysorg就深入分析了LIama3的实力,简单来说,LIama3在开放式写作和创意问题上击败了顶尖模型,但在封闭式数学和编码问题上就稍弱一点。

438da4a0738bb010c57d947ec8c4e86e.png

不过随着提示词变得更加复杂,LIama3的能力也就下降得很明显。

以及在输出内容上面,LIama3的输出比其他模型更友好,也更具对话性。

24e1c7a29764341da31345f3f4a0a0d0.jpeg

除此之外,也有网友分析这与模型深度有关。

事实上与LIama3-70B唯一的区别是额外的Layer,甚至是复制的,没有新的训练数据。。

这意味着,120B大模型的智能水平是从模型的深度产生的。“这不仅仅是训练数据的函数,它是数据和深度的结合”。

cbba9be8816ecfa2effb4fd64bf8f459.png

有网友尝试本地部署,Ollama上已经支持下载。网友表示:它使用48 GB VRAM + 38 GB 系统 RAM。

4d71fd2d98d307a455294d9e8246db4a.png

啊这……走了走了。

142e8a005a8e0d4ed33a4d46be49b4c6.png

有提供GGUF形式的LMStudioAI,也很直接地说:不适合内存不足的人。

24181f560d0146b7a0b28b86b6b35ee1.png

原作者也很逗趣地表示:是时候跟你的RAM做告别了。

db05a70976f97da7e1a563c1ed9f2d97.png

但不管怎么说,已经在期待更多官方型号了。

比如,400B那种。

148d894a73d8f4dffc6e405e2f384aa8.png

参考链接:
[1]https://x.com/spectate_or/status/1788031383052374069
[2]https://x.com/spectate_or/status/1787308316152242289
[3]https://x.com/spectate_or/status/1787295252576952325
[4]https://x.com/spectate_or/status/1787264115804606628
[5]https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct
[6]https://x.com/maximelabonne/status/1787485038591746269
[7]https://x.com/spectate_or/status/1788102406250664171
[8]https://x.com/spectate_or/status/1787576927529615516

—  —

点这里

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/Monodyee/article/detail/567480
推荐阅读
相关标签