赞
踩
对于程序员来说,技术进步大大超过世人的想象,如果你不跟随时代进步,就会落后于时代。
我其实已经听过很多人跟我说过类似的话。只不过不同人嘴里提到的词汇各有不同——大数据、数据挖掘、机器学习、人工智能…… 这些当前火热的概念各有不同,又有交叉,总之都是推动我们掌控好海量数据,并从中提取到有价值信息的技术。
大数据相关职位的面试邀请占比与日俱增
很多候选人对大数据相关岗位的青睐并非偶然
互联网行业的快速发展,让不少公司拥有了成千上万的用户数据,各家都想挖掘这座储量丰富的金矿,由此延伸出数据在自家业务不同应用场景中的巨大价值——京东、淘宝等电商网站利用用户画像做个性化推荐,PayPal、宜信等互联网金融公司通过识别高危行为的特征实施风险控制,滴滴、达达等出行、配送业务利用交易数据进行实时定价从而使利润最大化……
还有一些公司,借助大数据相关技术创造出新的业务模式——比如利用算法做个性化内容推荐的今日头条、一点资讯
这些企业整体对大数据、数据挖掘相关人才的需求非常之大,导致行业内人才的供给相对不足。因而薪资通常也相对高一些。
再加上这些岗位相比于传统的软件工程,有更高的挑战空间和更大的难度,自然引得更多人才进入到这个领域。
对于工程师来说,可以考虑的大数据相关岗位有哪些?
从各家招聘的工程师来看,与大数据打交道的核心工程师通常分为这么两大类
大数据平台/开发工程师
他们的工作重心在于数据的收集、存储、管理与处理。
通常比较偏底层基础架构的开发和维护,需要这些工程师对 Hadoop/Spark 生态有比较清晰的认识,懂分布式集群的开发和维护。熟悉 NoSQL,了解 ETL,了解数据仓库的构建,还可能接触机器学习平台等平台搭建。
有些大数据开发工程师做的工作可能也会偏重于应用层,将算法工程师训练好的模型在逻辑应用层进行实现,不过有些公司会将此类工程师归入软件开发团队而非大数据团队。
算法&数据挖掘工程师
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。