当前位置:   article > 正文

Tensorflow实例:利用LSTM预测股票每日最高价(一)_lstm股票

lstm股票

RNN与LSTM

这一部分主要涉及循环神经网络的理论,讲的可能会比较简略。

什么是RNN

RNN全称循环神经网络(Recurrent Neural Networks),是用来处理序列数据的。在传统的神经网络模型中,从输入层到隐含层再到输出层,层与层之间是全连接的,每层之间的节点是无连接的。但是这种普通的神经网络对于很多关于时间序列的问题却无能无力。例如,你要预测句子的下一个单词是什么,一般需要用到前面的单词,因为一个句子中前后单词并不是独立的。RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关。具体的表现形式为网络会对前面时刻的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出。
说了这么多,用一张图表示,就是这个样子。

这里写图片描述
传统的神经网络中,数据从输入层输入,在隐藏层加工,从输出层输出。RNN不同的就是在隐藏层的加工方法不一样,后一个节点不仅受输入层输入的影响,还包受上一个节点的影响。
展开来就是这个样子:
这里写图片描述

图中的xt1

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/167991
推荐阅读
相关标签
  

闽ICP备14008679号