当前位置:   article > 正文

Spark-Scala语言实战(8)

Spark-Scala语言实战(8)

在之前的文章中,我们学习了如何在spark中使用RDD方法的map,sortby,collect。想了解的朋友可以查看这篇文章。同时,希望我的文章能帮助到你,如果觉得我的文章写的不错,请留下你宝贵的点赞,谢谢。

Spark-Scala语言实战(7)-CSDN博客文章浏览阅读802次,点赞22次,收藏8次。​今天开始的文章,我会带给大家如何在spark的中使用我们的RDD方法,今天学习RDD方法中的map,sortby,collect三种方法。希望我的文章能帮助到大家,也欢迎大家来我的文章下交流讨论,共同进步。​https://blog.csdn.net/qq_49513817/article/details/137143284?今天的文章,我会继续带着大家如何在spark的中使用我们的RDD方法,今天学习RDD方法中的flatMap,take,union三种方法。

目录

一、知识回顾

二、RDD方法

1.flatMap

2.take

3.union

拓展- 方法参数设置

1.方法参数

 2.sortBy参数设置

一、知识回顾

昨天我们学习了RDD的三种方法,分别是map,sortby,collect。

其中map的作用是转换操作

它会转化成一个新的RDD

其次就是sortby,它可以对我们RDD中的元素进行排序

当然,升序降序都是我们可以通过参数自行设置的

最后就是我们的collect,它的作用是将数据转化成数组

现在复习完毕,开始今天的学习吧

二、RDD方法

1.flatMap

  •  flatMap()方法将函数参数应用于RDD之中的每一个元素,将返回的迭代器(如数组、列表等)中的所有元素构成新的RDD。
  • 使用flatMap()方法时先进行map(映射)再进行flat(扁平化)操作,数据会先经过跟map一样的操作,为每一条输入返回一个迭代器(可迭代的数据类型),然后将所得到的不同级别的迭代器中的元素全部当成同级别的元素,返回一个元素级别全部相同的RDD。
  • 这个转换操作通常用来切分单词。 

例: 

  1. import org.apache.spark.{SparkConf, SparkContext}
  2. object p1 {
  3. def main(args: Array[String]): Unit = {
  4. val conf=new SparkConf().setMaster("local").setAppName("p2")
  5. val sc=new SparkContext(conf)
  6. // 创建一个包含字符串的列表,并将其转换为RDD
  7. val ppp = List("1,2,3", "4,5,6", "7,8,9")
  8. val rdd = sc.parallelize(ppp)
  9. // 定义一个函数来拆分字符串并返回数字列表
  10. def ppppp(s: String): List[Int] = {
  11. s.split(",").map(_.toInt).toList
  12. }
  13. val pppp = rdd.flatMap(ppppp)
  14. val pppppp = pppp.collect()
  15. pppppp.foreach(println)
  16. }
  17. }

 

可以看到,我们的代码预期效果就是用flatMap方法将列表中三个字符串给拆分,那么运行看看效果吧

 可以看到输出结果,成功拆分

2.take

  • take(N)方法用于获取RDD的前N个元素,返回数据为数组。
  • take()与collect()方法的原理相似,collect()方法用于获取全部数据,take()方法获取指定个数的数据。

例: 

  1. import org.apache.spark.{SparkConf, SparkContext}
  2. object p1 {
  3. def main(args: Array[String]): Unit = {
  4. val conf=new SparkConf().setMaster("local").setAppName("p2")
  5. val sc=new SparkContext(conf)
  6. // 创建一个包含一些数字的RDD
  7. val p = sc.parallelize(Seq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
  8. // 使用take操作取出前3个元素
  9. val pp = p.take(3)
  10. // 打印取出的元素
  11. pp.foreach(println)
  12. }
  13. }

看我们的代码,可以知道我们要用take方法取出我们前三个元素,那么就应该是元素 1,2,3,那么现在运行代码看下是否输出这些值。

可以看到成功输出1,2,3,代码正确,快去尝试吧~ 

3.union

  • union()方法是一种转换操作,用于将两个RDD合并成一个,不进行去重操作,而且两个RDD中每个元素中的值的个数、数据类型需要保持一致。
  • 使用union()方法合并两个RDD。

例: 

  1. import org.apache.spark.{SparkConf, SparkContext}
  2. object p1 {
  3. def main(args: Array[String]): Unit = {
  4. val conf=new SparkConf().setMaster("local").setAppName("p2")
  5. val sc=new SparkContext(conf)
  6. // 创建第一个RDD
  7. val p1 = sc.parallelize(Seq(1, 2, 3))
  8. // 创建第二个RDD
  9. val p2 = sc.parallelize(Seq(4, 5, 6))
  10. // 使用union操作合并两个RDD
  11. val ppp = p1.union(p2)
  12. // 收集结果并打印
  13. val ppppp = ppp.collect()
  14. ppppp.foreach(println)
  15. }
  16. }

 可以看到代码预期效果是使用union方法将p1与p2合并,那么ppppp输出的应该是123456,那么来运行试试吧

 

 可以看到成功输出123456。

注意,union合并需要两个数据类型相同,否则会报错

  

 一个字母,一个数字,是肯定不行的

  

如果这样全是字母,就可以,快去动手试试吧~ 

拓展- 方法参数设置

1.方法参数

方法参数描述与效果
mapfunc(函数)对RDD中的每个元素应用函数func,返回一个新的RDD。每个元素都会根据func定义的规则进行转换。
sortBykeyfunc(函数,可选),ascending(布尔值,可选,默认为True),numPartitions(整数,可选)根据keyfunc指定的键对RDD中的元素进行排序,返回一个新的RDD。ascending决定排序方向,numPartitions决定输出RDD的分区数。未指定keyfunc时,默认按照元素本身排序。
collect将RDD中的所有元素收集到驱动程序中,并返回列表。这对于获取RDD的全部内容并在驱动程序中处理非常有用,但请注意,对于大RDD可能会导致性能问题。
flatMapfunc(函数)对RDD中的每个元素应用函数func,并将返回的所有元素“压平”成一个新的RDD。这常用于将嵌套结构的数据扁平化。
takenum(整数)从RDD的开头返回前num个元素。这可以用于获取RDD的部分数据,而不必处理整个RDD。
unionother(另一个RDD)返回两个RDD的并集。这不会删除重复的元素,因此如果两个RDD中有相同的元素,它们都会在结果RDD中出现。

 2.sortBy参数设置

参数描述效果
keyfunc(函数,可选)指定用于排序的键的函数。如果未指定keyfuncsortBy将默认按照RDD中的元素本身进行排序。如果指定了keyfunc,则sortBy将按照keyfunc处理后的结果对RDD中的元素进行排序。例如,如果RDD的元素是元组,你可以通过keyfunc来指定按照元组的某个字段进行排序。
ascending(布尔值,可选,默认为True)指定排序方向。如果ascending为True,则按照升序排序;如果为False,则按照降序排序。这允许你根据需要选择正序或倒序排列RDD中的元素。
numPartitions(整数,可选)指定输出RDD的分区数。这个参数决定了排序后RDD的分区数。如果未指定,则排序后的RDD的分区数通常与原始RDD的分区数相同。分区数的设置会影响排序操作的并行度和性能,因此在实际应用中需要根据集群资源和任务需求进行合理设置。
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/344746
推荐阅读
相关标签
  

闽ICP备14008679号