当前位置:   article > 正文

计算机视觉_high-level的视觉任务

high-level的视觉任务

1.计算机视觉上游任务与下游任务

计算机视觉四大任务:
分类(解决"what")
定位(解决"where")
检测(解决"what"和"where")
分割(实例分割、语义分割和场景分割等像素级别的处理)

(1)上游任务

预训练模型。一般就是利用上游数据上进行预训练,以生成一个包含视觉表征的模型。

(2)下游任务

下游任务是计算机视觉应用程序,用于评估通过自监督学习学习到的特征的质量。当训练数据稀缺时,这些应用程序可以极大地受益于预训练模型。

下游任务更多的是评估任务,相当于项目落地,需要去做具体任务来评价模型好坏。

如目标检测、语义分割

2.low-level与high-level

(1)low-level

把特定降质下的图片还原成质量更高的图片,包括去噪,锐化等操作,客观指标主要是PSNR,SSIM。

Low-level feature:
通常是指图像中的一些小的细节信息,例如边缘(edge),角(corner),颜色(color),像素(pixeles), 梯度(gradients)等,这些信息可以通过滤波器、SIFT或HOG获取。

但是目前泛化性差,换个数据集,同种任务效果就变差。存在客观指标与主观感受不符合,GAP,指标刷很高,人眼观感不佳,落地的问题。缺乏与High-level之间的联系

(2)high-level

分类(classification),定位(location)检测(detection),分割(segmentation)等。相对于low-level,他要求数据质量更高,图片更清晰等。评价指标有IOU,MIOU等。

High level feature:
是建立在low level feature之上的,可以用于图像中目标或物体形状的识别和检测,具有更丰富的语义信息。
通常来说,卷积神经网络中都会使用这两种类型的features: 卷积神经网络的前几层学习low level feature,后几层学习的是high level feature。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/365542
推荐阅读
相关标签
  

闽ICP备14008679号