当前位置:   article > 正文

Resnet 18 及34 的代码复现(基于李沐的动手学深度学习)_resnet34代码

resnet34代码

 resnet作为一个经典的图像分类模型,下面是对于resnet18及34的复现代码,具体细节请查阅resnet原文:https://arxiv.org/abs/1512.03385

一、残差块

 

 BasicBlock模块有两种模式,一种是输入X以后需要用1x1卷积层来进行下采样,从而升维,将通道数加倍,其中的步幅stride=2,一种是不需要1x1卷积层,直接将x与拟合的残差F(X)相加。basicblock 采用两层3x3的卷积层,每层卷积后经过批量规范化以及Relu函数激活。以下是详细代码。(basicblock)主要是用于resnet18以及resnet34

  1. import torch
  2. from torch import nn
  3. from torch.nn import functional as F
  4. class Residual(nn.Module):
  5. def __init__(self, input_channels, num_channels,
  6. use_1x1conv=False, strides=1):
  7. super().__init__()
  8. self.conv1 = nn.Conv2d(input_channels, num_channels,
  9. kernel_size=3, padding=1, stride=strides)
  10. self.conv2 = nn.Conv2d(num_channels, num_channels,
  11. kernel_size=3, padding=1)
  12. if use_1x1conv:
  13. self.conv3 = nn.Conv2d(input_channels, num_channels,
  14. kernel_size=1, stride=strides)
  15. else:
  16. self.conv3 = None
  17. self.bn1 = nn.BatchNorm2d(num_channels)
  18. self.bn2 = nn.BatchNorm2d(num_channels)
  19. def forward(self, X):
  20. Y = F.relu(self.bn1(self.conv1(X)))
  21. Y = self.bn2(self.conv2(Y))
  22. if self.conv3:
  23. X = self.conv3(X)
  24. Y += X
  25. return F.relu(Y)

二、resnet18主体

 可以看到conv1由7x7的卷积层组成,输出为64,stride=2

  1. b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
  2. #该输入为通道数1,可修改为3,取决于图片
  3. nn.BatchNorm2d(64), nn.ReLU(),
  4. nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

然后构建resnet18

  1. #resnet18
  2. def resnet18(num_classes,in_channels=1):
  3. def resnet_block(in_channels,out_channels,num_residuals,
  4. first_block=False):
  5. blk = []
  6. for i in range(num_residuals):
  7. if i == 0 and not first_block:
  8. blk.append(Residual(in_channels, out_channels,
  9. use_1x1conv=True, strides=2))
  10. else:
  11. blk.append(Residual(out_channels, out_channels))
  12. return nn.Sequential(*blk)
  13. net = nn.Sequential(b1)
  14. net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
  15. net.add_module("resnet_block2", resnet_block(64, 128, 2))
  16. net.add_module("resnet_block3", resnet_block(128, 256, 2))
  17. net.add_module("resnet_block4", resnet_block(256, 512, 2))
  18. net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
  19. net.add_module("fc", nn.Sequential(nn.Flatten(),
  20. nn.Linear(512, num_classes)))
  21. return net

上述的num_classes表示需要分类的类别数

resnet18的架构图片如下

其中conv_3,conv_4,conv_5的三个模块中每个模块中的第一个残差块的输入输出通道数分别从64——128,128——256,256——512,并需要进行1x1的卷积将输入x下采样,从而保证输出的x的通道数与两层3X3卷积后的通道数一致。并且通过第一层的步幅为2的3X3卷积以后,通道数加倍,图片的尺寸,长和宽各变为原来的一半,从而减少了参数量。

以下是输出尺寸的计算公式:

一个尺寸 a*a 的特征图,经过 b*b 的卷积层,步幅(stride)=c,填充(padding)=d,输出特征图的尺寸为:[(a-b+2d)/c]+1

三、Resnet34

resnet34的残差块与resnet18类似,只是conv_2,conv_3,conv_4,conv_5中resnet34网络更深一点。下面是代码实现

  1. def resnet34(num_classes,in_channels=1):
  2. def resnet_block(in_channels,out_channels,num_residuals,
  3. first_block=False):
  4. blk = []
  5. for i in range(num_residuals):
  6. if i == 0 and not first_block:
  7. blk.append(Residual_1(in_channels, out_channels,
  8. use_1x1conv=True, strides=2))
  9. else:
  10. blk.append(Residual_1(out_channels, out_channels))
  11. return nn.Sequential(*blk)
  12. net = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
  13. nn.BatchNorm2d(64),
  14. nn.ReLU(),
  15. nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
  16. net.add_module("resnet_block1", resnet_block(64, 64, 3, first_block=True))
  17. net.add_module("resnet_block2", resnet_block(64, 128, 4))
  18. net.add_module("resnet_block3", resnet_block(128, 256, 6))
  19. net.add_module("resnet_block4", resnet_block(256, 512, 3))
  20. net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
  21. net.add_module("fc", nn.Sequential(nn.Flatten(),
  22. nn.Linear(512, num_classes)))
  23. return net

以下为完整代码

  1. import torch
  2. from torch import nn
  3. from torch.nn import functional as F
  4. class Residual(nn.Module):
  5. def __init__(self, input_channels, num_channels,
  6. use_1x1conv=False, strides=1):
  7. super().__init__()
  8. self.conv1 = nn.Conv2d(input_channels, num_channels,
  9. kernel_size=3, padding=1, stride=strides)
  10. self.conv2 = nn.Conv2d(num_channels, num_channels,
  11. kernel_size=3, padding=1)
  12. if use_1x1conv:
  13. self.conv3 = nn.Conv2d(input_channels, num_channels,
  14. kernel_size=1, stride=strides)
  15. else:
  16. self.conv3 = None
  17. self.bn1 = nn.BatchNorm2d(num_channels)
  18. self.bn2 = nn.BatchNorm2d(num_channels)
  19. def forward(self, X):
  20. Y = F.relu(self.bn1(self.conv1(X)))
  21. Y = self.bn2(self.conv2(Y))
  22. if self.conv3:
  23. X = self.conv3(X)
  24. Y += X
  25. return F.relu(Y)
  26. b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
  27. #该输入为通道数1,可修改为3,取决于图片
  28. nn.BatchNorm2d(64), nn.ReLU(),
  29. nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
  30. #resnet18
  31. def resnet18(num_classes,in_channels=1):
  32. def resnet_block(in_channels,out_channels,num_residuals,
  33. first_block=False):
  34. blk = []
  35. for i in range(num_residuals):
  36. if i == 0 and not first_block:
  37. blk.append(Residual(in_channels, out_channels,
  38. use_1x1conv=True, strides=2))
  39. else:
  40. blk.append(Residual(out_channels, out_channels))
  41. return nn.Sequential(*blk)
  42. net = nn.Sequential(b1)
  43. net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
  44. net.add_module("resnet_block2", resnet_block(64, 128, 2))
  45. net.add_module("resnet_block3", resnet_block(128, 256, 2))
  46. net.add_module("resnet_block4", resnet_block(256, 512, 2))
  47. net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
  48. net.add_module("fc", nn.Sequential(nn.Flatten(),
  49. nn.Linear(512, num_classes)))
  50. return net
  51. def resnet34(num_classes,in_channels=1):
  52. def resnet_block(in_channels,out_channels,num_residuals,
  53. first_block=False):
  54. blk = []
  55. for i in range(num_residuals):
  56. if i == 0 and not first_block:
  57. blk.append(Residual_1(in_channels, out_channels,
  58. use_1x1conv=True, strides=2))
  59. else:
  60. blk.append(Residual_1(out_channels, out_channels))
  61. return nn.Sequential(*blk)
  62. net = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
  63. nn.BatchNorm2d(64),
  64. nn.ReLU(),
  65. nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
  66. net.add_module("resnet_block1", resnet_block(64, 64, 3, first_block=True))
  67. net.add_module("resnet_block2", resnet_block(64, 128, 4))
  68. net.add_module("resnet_block3", resnet_block(128, 256, 6))
  69. net.add_module("resnet_block4", resnet_block(256, 512, 3))
  70. net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
  71. net.add_module("fc", nn.Sequential(nn.Flatten(),
  72. nn.Linear(512, num_classes)))
  73. return net

声明:本文内容由网友自发贡献,转载请注明出处:【wpsshop】
推荐阅读
相关标签
  

闽ICP备14008679号