赞
踩
resnet作为一个经典的图像分类模型,下面是对于resnet18及34的复现代码,具体细节请查阅resnet原文:https://arxiv.org/abs/1512.03385
BasicBlock模块有两种模式,一种是输入X以后需要用1x1卷积层来进行下采样,从而升维,将通道数加倍,其中的步幅stride=2,一种是不需要1x1卷积层,直接将x与拟合的残差F(X)相加。basicblock 采用两层3x3的卷积层,每层卷积后经过批量规范化以及Relu函数激活。以下是详细代码。(basicblock)主要是用于resnet18以及resnet34
- import torch
- from torch import nn
- from torch.nn import functional as F
-
- class Residual(nn.Module):
- def __init__(self, input_channels, num_channels,
- use_1x1conv=False, strides=1):
- super().__init__()
- self.conv1 = nn.Conv2d(input_channels, num_channels,
- kernel_size=3, padding=1, stride=strides)
- self.conv2 = nn.Conv2d(num_channels, num_channels,
- kernel_size=3, padding=1)
- if use_1x1conv:
- self.conv3 = nn.Conv2d(input_channels, num_channels,
- kernel_size=1, stride=strides)
- else:
- self.conv3 = None
- self.bn1 = nn.BatchNorm2d(num_channels)
- self.bn2 = nn.BatchNorm2d(num_channels)
-
- def forward(self, X):
- Y = F.relu(self.bn1(self.conv1(X)))
- Y = self.bn2(self.conv2(Y))
- if self.conv3:
- X = self.conv3(X)
- Y += X
- return F.relu(Y)

可以看到conv1由7x7的卷积层组成,输出为64,stride=2
- b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
- #该输入为通道数1,可修改为3,取决于图片
- nn.BatchNorm2d(64), nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
然后构建resnet18
- #resnet18
- def resnet18(num_classes,in_channels=1):
- def resnet_block(in_channels,out_channels,num_residuals,
- first_block=False):
- blk = []
- for i in range(num_residuals):
- if i == 0 and not first_block:
- blk.append(Residual(in_channels, out_channels,
- use_1x1conv=True, strides=2))
- else:
- blk.append(Residual(out_channels, out_channels))
- return nn.Sequential(*blk)
-
- net = nn.Sequential(b1)
- net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
- net.add_module("resnet_block2", resnet_block(64, 128, 2))
- net.add_module("resnet_block3", resnet_block(128, 256, 2))
- net.add_module("resnet_block4", resnet_block(256, 512, 2))
- net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
- net.add_module("fc", nn.Sequential(nn.Flatten(),
- nn.Linear(512, num_classes)))
- return net
-

上述的num_classes表示需要分类的类别数
resnet18的架构图片如下
其中conv_3,conv_4,conv_5的三个模块中每个模块中的第一个残差块的输入输出通道数分别从64——128,128——256,256——512,并需要进行1x1的卷积将输入x下采样,从而保证输出的x的通道数与两层3X3卷积后的通道数一致。并且通过第一层的步幅为2的3X3卷积以后,通道数加倍,图片的尺寸,长和宽各变为原来的一半,从而减少了参数量。
以下是输出尺寸的计算公式:
一个尺寸 a*a 的特征图,经过 b*b 的卷积层,步幅(stride)=c,填充(padding)=d,输出特征图的尺寸为:[(a-b+2d)/c]+1
resnet34的残差块与resnet18类似,只是conv_2,conv_3,conv_4,conv_5中resnet34网络更深一点。下面是代码实现
- def resnet34(num_classes,in_channels=1):
- def resnet_block(in_channels,out_channels,num_residuals,
- first_block=False):
- blk = []
- for i in range(num_residuals):
- if i == 0 and not first_block:
- blk.append(Residual_1(in_channels, out_channels,
- use_1x1conv=True, strides=2))
- else:
- blk.append(Residual_1(out_channels, out_channels))
- return nn.Sequential(*blk)
-
- net = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
- nn.BatchNorm2d(64),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- net.add_module("resnet_block1", resnet_block(64, 64, 3, first_block=True))
- net.add_module("resnet_block2", resnet_block(64, 128, 4))
- net.add_module("resnet_block3", resnet_block(128, 256, 6))
- net.add_module("resnet_block4", resnet_block(256, 512, 3))
- net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
- net.add_module("fc", nn.Sequential(nn.Flatten(),
- nn.Linear(512, num_classes)))
- return net

以下为完整代码
- import torch
- from torch import nn
- from torch.nn import functional as F
-
- class Residual(nn.Module):
- def __init__(self, input_channels, num_channels,
- use_1x1conv=False, strides=1):
- super().__init__()
- self.conv1 = nn.Conv2d(input_channels, num_channels,
- kernel_size=3, padding=1, stride=strides)
- self.conv2 = nn.Conv2d(num_channels, num_channels,
- kernel_size=3, padding=1)
- if use_1x1conv:
- self.conv3 = nn.Conv2d(input_channels, num_channels,
- kernel_size=1, stride=strides)
- else:
- self.conv3 = None
- self.bn1 = nn.BatchNorm2d(num_channels)
- self.bn2 = nn.BatchNorm2d(num_channels)
-
- def forward(self, X):
- Y = F.relu(self.bn1(self.conv1(X)))
- Y = self.bn2(self.conv2(Y))
- if self.conv3:
- X = self.conv3(X)
- Y += X
- return F.relu(Y)
-
- b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
- #该输入为通道数1,可修改为3,取决于图片
- nn.BatchNorm2d(64), nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
-
- #resnet18
- def resnet18(num_classes,in_channels=1):
- def resnet_block(in_channels,out_channels,num_residuals,
- first_block=False):
- blk = []
- for i in range(num_residuals):
- if i == 0 and not first_block:
- blk.append(Residual(in_channels, out_channels,
- use_1x1conv=True, strides=2))
- else:
- blk.append(Residual(out_channels, out_channels))
- return nn.Sequential(*blk)
-
- net = nn.Sequential(b1)
- net.add_module("resnet_block1", resnet_block(64, 64, 2, first_block=True))
- net.add_module("resnet_block2", resnet_block(64, 128, 2))
- net.add_module("resnet_block3", resnet_block(128, 256, 2))
- net.add_module("resnet_block4", resnet_block(256, 512, 2))
- net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
- net.add_module("fc", nn.Sequential(nn.Flatten(),
- nn.Linear(512, num_classes)))
- return net
-
-
-
- def resnet34(num_classes,in_channels=1):
- def resnet_block(in_channels,out_channels,num_residuals,
- first_block=False):
- blk = []
- for i in range(num_residuals):
- if i == 0 and not first_block:
- blk.append(Residual_1(in_channels, out_channels,
- use_1x1conv=True, strides=2))
- else:
- blk.append(Residual_1(out_channels, out_channels))
- return nn.Sequential(*blk)
-
- net = nn.Sequential(nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3),
- nn.BatchNorm2d(64),
- nn.ReLU(),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
-
- net.add_module("resnet_block1", resnet_block(64, 64, 3, first_block=True))
- net.add_module("resnet_block2", resnet_block(64, 128, 4))
- net.add_module("resnet_block3", resnet_block(128, 256, 6))
- net.add_module("resnet_block4", resnet_block(256, 512, 3))
- net.add_module("global_avg_pool", nn.AdaptiveAvgPool2d((1,1)))
- net.add_module("fc", nn.Sequential(nn.Flatten(),
- nn.Linear(512, num_classes)))
- return net
-

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。