当前位置:   article > 正文

基于yolov8-paddleocr-车牌识别_yolov8 ocr字符识别

yolov8 ocr字符识别

1 介绍

使用yolov8模型进行车牌区域识别,然后使用paddlecor模型将字体提取出来,由于数据量很大,支持复杂环境下的识别。数据集共29642张,其中27642张用了做训练,2000张用来做验证。

2 训练yolov8模型

yolov8详细介绍可以在网上找资料看,训练很简单,安装完包就一行train训练就行。

from ultralytics import YOLO

# 29642 # 27642 训练 2000 测试
if __name__ == '__main__':
    model = YOLO("yolov8m.yaml")  # build a new model from scratch
    results = model.train(data="data.yaml", epochs=20, batch = 8)  # train the model
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

3 OCR识别

3.1 导入paddleocr模型

os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'  # 设置允许重复加载动态链接库,若不允许,使用jupyter运行时内核会挂掉
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
ocr = PaddleOCR(rec_model_dir = "models/ocr",use_angle_cls=False,
                use_gpu=False,lang="ch", show_log=False)  # need to run only once to download and load model into memory
  • 1
  • 2
  • 3
  • 4
  • 5

3.2 导入yolov8模型,进行推理

#导入yolov8模型
model = YOLO("models/yolov8n/best.pt")  # load a pretrained model (recommended for training)
  • 1
  • 2

3.3 进行推理

对于每张图片,先识别出车牌的位置,然后再提取字符。

  if img is not None:
        car_num, xyxy, xywhn = get_yolov8_result(model, img)
        roi_out_path = os.path.join(roi_path, file)
        if car_num == 1:
            # 表示只有一个位置是车牌
            xyxy_tr = torch.tensor(xyxy)  # 转换为tensor类型
            ROI = save_one_box(xyxy_tr, img, file=Path(roi_out_path), BGR=True)  # 提取车牌区域
            ocr_text = ocr.ocr(ROI, cls=False)  # 输入到百度模型进行ocr识别
            if len(ocr_text[0]) != 0:
                # 表示这个位置是车牌
                number_plate = process_car_text(ocr_text)  # 处理车牌
                xywhn_str = process_xywhn(xywhn)
                line_str = file + "," + xywhn_str + "," + number_plate + "\n"
                write_append_content(output_file_path, line_str)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

4 结果展示

提取到的ROI车牌区域在这里插入图片描述
提取到的车牌结果,只展示部分结果在这里插入图片描述
完整代码可以咨询:https://docs.qq.com/doc/DWEtRempVZ1NSZHdQ

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/554001
推荐阅读
相关标签
  

闽ICP备14008679号