当前位置:   article > 正文

基于python的超市历年数据可视化分析_超市消费客户画像大数据可视化分析

基于python的超市历年数据可视化分析_超市消费客户画像大数据可视化分析

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

	- * [0、导入包和数据](#0_91)
		* [1、列名重命名](#1_103)
		* [2、提取数据中时间,方便后续分析绘图](#2_112)
	- [三、数据可视化](#_122)
	- * [1、美国各个地区销售额的分布(地图)](#1_123)
		* [2、各产品类别销售额对比(柱状图)](#2_175)
		* [3、不同客户类别销售额对比(饼图)](#3_285)
		* [4、每月各产品销售额top10榜单](#4top10_338)
		* [5、销售额、净利润在时间维度的变化(折线图)](#5_469)
		* [6、销售额](#6_621)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

在这里插入图片描述

一、数据描述

数据集9994条数据,横跨1237天,
销售额为2,297,200.8603美元,
利润为286,397.0217美元,
他们的库存中有1862件独特的物品,
它们被分为3类,
所有这些物品都在美国4个地区的49个州销售,
来着793位客户的5009个订单。

数据集: Superstore.csv 来源:kaggle

一共21列数据,每一列属性描述如下:

Row ID => 每一行唯一的ID.
Order ID => 每个客户的唯一订单ID.
Order Date => 产品的订单日期.
Ship Date => 产品发货日期.
Ship Mode=> 客户指定的发货模式.
Customer ID => 标识每个客户的唯一ID.
Customer Name => 客户的名称.
Segment => The segment where the Customer belongs.
Country => 客户居住的国家.
City => 客户居住的城市.
State => 客户所在的州.
Postal Code => 每个客户的邮政编码.
Region => “客户”所属地区.
Product ID => 产品的唯一ID.
Category => 所订购产品的类别.
Sub-Category => 所订购产品的子类别.
Product Name => 产品名称
Sales =>产品的销售.
Quantity => 产品数量.
Discount => 提供折扣.
Profit => 已发生的利润/亏损.

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
1、数据概览

9994行,21列数据

print(df.info())

  • 1
  • 2
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 9994 entries, 0 to 9993
Data columns (total 21 columns):
 # Column Non-Null Count Dtype 
---  ------         --------------  -----  
 0   Row ID         9994 non-null   int64  
 1   Order ID       9994 non-null   object 
 2   Order Date     9994 non-null   object 
 3   Ship Date      9994 non-null   object 
 4   Ship Mode      9994 non-null   object 
 5   Customer ID    9994 non-null   object 
 6   Customer Name  9994 non-null   object 
 7   Segment        9994 non-null   object 
 8   Country        9994 non-null   object 
 9   City           9994 non-null   object 
 10  State          9994 non-null   object 
 11  Postal Code    9994 non-null   int64  
 12  Region         9994 non-null   object 
 13  Product ID     9994 non-null   object 
 14  Category       9994 non-null   object 
 15  Sub-Category   9994 non-null   object 
 16  Product Name   9994 non-null   object 
 17  Sales          9994 non-null   float64
 18  Quantity       9994 non-null   int64  
 19  Discount       9994 non-null   float64
 20  Profit         9994 non-null   float64
dtypes: float64(3), int64(3), object(15)
memory usage: 1.6+ MB
None

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

在这里插入图片描述

二、数据预处理
0、导入包和数据
import pandas as pd
from pyecharts.charts import \*
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode

data = pd.read_csv(r'./data/Superstore.csv')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
1、列名重命名

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

.net/forums/4f45ff00ff254613a03fab5e56a57acb)**

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/681829
推荐阅读
相关标签
  

闽ICP备14008679号