当前位置:   article > 正文

OpenCv实现两幅图像的拼接

特征匹配拼接两幅图像openvc代码

直接贴上源码

来源:http://www.myexception.cn/image/1498389.html

实验效果

Left.jpg                            

right.jpg

ImageMatch.jpg

 

#include <iostream>
#include <iomanip>
#include "opencv2/core/core.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/legacy/legacy.hpp"
#include "opencv2/legacy/compat.hpp"
using namespace cv;
using namespace std;


int main()
{
    Mat leftImg=imread("left.jpg");
    Mat rightImg=imread("right.jpg");
    if(leftImg.data==NULL||rightImg.data==NULL)
        return 0;

    //转化成灰度图
    Mat leftGray;
    Mat rightGray;
    cvtColor(leftImg,leftGray,CV_BGR2GRAY);
    cvtColor(rightImg,rightGray,CV_BGR2GRAY);

    //获取两幅图像的共同特征点

    int minHessian=400;
    SurfFeatureDetector detector(minHessian);
    vector<KeyPoint> leftKeyPoints,rightKeyPoints;
    detector.detect(leftGray,leftKeyPoints);
    detector.detect(rightGray,rightKeyPoints);
    SurfDescriptorExtractor extractor;
    Mat leftDescriptor,rightDescriptor;
    extractor.compute(leftGray,leftKeyPoints,leftDescriptor);
    extractor.compute(rightGray,rightKeyPoints,rightDescriptor);
    FlannBasedMatcher matcher;
    vector<DMatch> matches;
    matcher.match(leftDescriptor,rightDescriptor,matches);    
    int matchCount=leftDescriptor.rows;

    if(matchCount>15)
    {
        matchCount=15;
        //sort(matches.begin(),matches.begin()+leftDescriptor.rows,DistanceLessThan);
        sort(matches.begin(),matches.begin()+leftDescriptor.rows);
    }    

    vector<Point2f> leftPoints;
    vector<Point2f> rightPoints;

    for(int i=0; i<matchCount; i++)
    {
        leftPoints.push_back(leftKeyPoints[matches[i].queryIdx].pt);
        rightPoints.push_back(rightKeyPoints[matches[i].trainIdx].pt);
    }

    //获取左边图像到右边图像的投影映射关系
    Mat homo=findHomography(leftPoints,rightPoints);
    Mat shftMat=(Mat_<double>(3,3)<<1.0,0,leftImg.cols, 0,1.0,0, 0,0,1.0);

    //拼接图像
    Mat tiledImg;
    warpPerspective(leftImg,tiledImg,shftMat*homo,Size(leftImg.cols+rightImg.cols,rightImg.rows));
    rightImg.copyTo(Mat(tiledImg,Rect(leftImg.cols,0,rightImg.cols,rightImg.rows)));

    //保存图像
    imwrite("tiled.jpg",tiledImg);
    //显示拼接的图像
    imshow("tiled image",tiledImg);
    waitKey(0);
    return 0;
}

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/81279
推荐阅读
相关标签
  

闽ICP备14008679号