当前位置:   article > 正文

基于Yolov8网络进行目标检测(三)-训练自己的数据集

warning 鈿狅笍 no model scale passed. assuming scale='n'.

前一篇文章详细了讲解了如何构造自己的数据集,以及如何修改模型配置文件和数据集配置文件,本篇主要是如何训练自己的数据集,并且如何验证。

VOC2012数据集下载地址:

http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

coco全量数据集下载地址:

http://images.cocodtaset.org/annotations/annotations_trainval2017.zip

本篇以以下图片为预测对象。

23ecb336a3a7c57f87981be4fd6e2841.png

一、对coco128数据集进行训练,coco128.yaml中已包括下载脚本,选择yolov8n轻量模型,开始训练

yolo detect train data=coco128.yaml model=model\yolov8n.pt epochs=100 imgsz=640

训练的相关截图,第一部分是展开后的命令行执行参数和网络结构

583621897c984173178f0a6af76d5ad6.png

第二部分是每轮训练过程

863bc98cb1f0cf75713d440f8a470092.png

第三部分是对各类标签的验证情况

7def8a66be66c9a412079ece89bfe787.png

二、对VOC2012数据集进行训练,使用我们定义的两个yaml配置文件,选择yolov8n轻量模型,开始训练

yolo detect train data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\datasets\VOC2012.yaml model=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml  pretrained=model\yolov8n.pt epochs=10 imgsz=640

以下为运行日志,和上述一样

  1. (venv) PS E:\JetBrains\PycharmProject\Yolov8Project> yolo detect train data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\datasets\VOC2012.yaml model=E:\JetBrains\PycharmProject\Yolov8Project\venv\
  2. Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml pretrained=model\yolov8n.pt epochs=10 imgsz=640
  3. WARNING no model scale passed. Assuming scale='n'.
  4. from n params module arguments
  5. 0-11464 ultralytics.nn.modules.conv.Conv[3, 16, 3, 2]
  6. 1-114672 ultralytics.nn.modules.conv.Conv[16, 32, 3, 2]
  7. 2-117360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
  8. 3-1118560 ultralytics.nn.modules.conv.Conv[32, 64, 3, 2]
  9. 4-1249664 ultralytics.nn.modules.block.C2f [64, 64, 2, True]
  10. 5-1173984 ultralytics.nn.modules.conv.Conv[64, 128, 3, 2]
  11. 6-12197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True]
  12. 7-11295424 ultralytics.nn.modules.conv.Conv[128, 256, 3, 2]
  13. 8-11460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True]
  14. 9-11164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
  15. 10-110 torch.nn.modules.upsampling.Upsample[None, 2, 'nearest']
  16. 11[-1, 6] 10 ultralytics.nn.modules.conv.Concat[1]
  17. 12-11148224 ultralytics.nn.modules.block.C2f [384, 128, 1]
  18. 13-110 torch.nn.modules.upsampling.Upsample[None, 2, 'nearest']
  19. 14[-1, 4] 10 ultralytics.nn.modules.conv.Concat[1]
  20. 15-1137248 ultralytics.nn.modules.block.C2f [192, 64, 1]
  21. 16-1136992 ultralytics.nn.modules.conv.Conv[64, 64, 3, 2]
  22. 17[-1, 12] 10 ultralytics.nn.modules.conv.Concat[1]
  23. 18-11123648 ultralytics.nn.modules.block.C2f [192, 128, 1]
  24. 19-11147712 ultralytics.nn.modules.conv.Conv[128, 128, 3, 2]
  25. 20[-1, 9] 10 ultralytics.nn.modules.conv.Concat[1]
  26. 21-11493056 ultralytics.nn.modules.block.C2f [384, 256, 1]
  27. 22[15, 18, 21] 1755212 ultralytics.nn.modules.head.Detect[20, [64, 128, 256]]
  28. VOC2012 summary: 225 layers, 3014748 parameters, 3014732 gradients
  29. Transferred319/355 items from pretrained weights
  30. UltralyticsYOLOv8.0.178Python-3.10.11 torch-2.0.1+cu118 CUDA:0(Quadro P2200, 5120MiB)
  31. engine\trainer: task=detect, mode=train, model=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytics\cfg\models\v8\VOC2012.yaml, data=E:\JetBrains\PycharmProject\Yolov8Project\venv\Lib\site-packages\ultralytic
  32. s\cfg\datasets\VOC2012.yaml, epochs=10, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=None, workers=8, project=None, name=None, exist_ok=False, pretrained=model\yolov8n.pt, optimizer=auto, verbose=
  33. True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save
  34. _json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_bu
  35. ffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, w
  36. orkspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hs
  37. v_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=runs\detect\train8
  38. WARNING no model scale passed. Assuming scale='n'.
  39. from n params module arguments
  40. 0-11464 ultralytics.nn.modules.conv.Conv[3, 16, 3, 2]
  41. 1-114672 ultralytics.nn.modules.conv.Conv[16, 32, 3, 2]
  42. 2-117360 ultralytics.nn.modules.block.C2f [32, 32, 1, True]
  43. train: Scanning E:\JetBrains\PyCharm Project\ObjectDetectionProject\datasets\VOC2012\labels\train.cache... 17125 images, 195 backgrounds, 0 corrupt: 100%|██████████| 17125/17125[00:00<?, ?it/s]
  44. val: Scanning E:\JetBrains\PyCharm Project\ObjectDetectionProject\datasets\VOC2012\labels\train.cache... 17125 images, 195 backgrounds, 0 corrupt: 100%|██████████| 17125/17125[00:00<?, ?it/s]
  45. Plotting labels to runs\detect\train8\labels.jpg...
  46. optimizer: 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically...
  47. optimizer: AdamW(lr=0.000417, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)
  48. Image sizes 640 train, 640 val
  49. Using8 dataloader workers
  50. Logging results to runs\detect\train8
  51. Starting training for10 epochs...
  52. Closing dataloader mosaic
  53. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  54. 1/102.41G0.91562.5721.24410640: 100%|██████████| 1071/1071[07:06<00:00, 2.51it/s]
  55. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:44<00:00, 3.26it/s]
  56. all 17125349130.6210.5720.6050.436
  57. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  58. 2/102.53G1.0061.8691.31110640: 100%|██████████| 1071/1071[07:06<00:00, 2.51it/s]
  59. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:40<00:00, 3.35it/s]
  60. all 17125349130.6440.540.5920.414
  61. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  62. 3/102.49G1.0381.6611.3449640: 100%|██████████| 1071/1071[07:02<00:00, 2.54it/s]
  63. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:44<00:00, 3.25it/s]
  64. all 17125349130.6160.5620.5940.419
  65. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  66. 4/102.47G1.0211.4931.33112640: 100%|██████████| 1071/1071[07:00<00:00, 2.55it/s]
  67. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:42<00:00, 3.29it/s]
  68. all 17125349130.6510.5880.6380.457
  69. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  70. 5/102.48G1.0051.4031.3184640: 100%|██████████| 1071/1071[07:00<00:00, 2.54it/s]
  71. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:41<00:00, 3.31it/s]
  72. all 17125349130.6730.5920.650.467
  73. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  74. 6/102.46G0.96821.2991.299640: 100%|██████████| 1071/1071[06:55<00:00, 2.58it/s]
  75. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:29<00:00, 3.58it/s]
  76. all 17125349130.7090.6230.6930.511
  77. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  78. 7/102.48G0.9321.2091.2618640: 100%|██████████| 1071/1071[06:57<00:00, 2.56it/s]
  79. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:39<00:00, 3.37it/s]
  80. all 17125349130.7210.6610.7220.542
  81. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  82. 8/102.49G0.89611.1271.2329640: 100%|██████████| 1071/1071[07:00<00:00, 2.55it/s]
  83. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:40<00:00, 3.35it/s]
  84. all 17125349130.7350.670.7460.567
  85. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  86. 9/102.47G0.85651.0581.2028640: 100%|██████████| 1071/1071[06:58<00:00, 2.56it/s]
  87. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:29<00:00, 3.59it/s]
  88. all 17125349130.7660.6960.7730.597
  89. Epoch GPU_mem box_loss cls_loss dfl_loss InstancesSize
  90. 10/102.45G0.82780.98891.17911640: 100%|██████████| 1071/1071[06:55<00:00, 2.58it/s]
  91. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:28<00:00, 3.61it/s]
  92. all 17125349130.7770.7180.7950.621
  93. 10 epochs completed in 1.620 hours.
  94. Optimizer stripped from runs\detect\train8\weights\last.pt, 6.2MB
  95. Optimizer stripped from runs\detect\train8\weights\best.pt, 6.2MB
  96. Validating runs\detect\train8\weights\best.pt...
  97. UltralyticsYOLOv8.0.178Python-3.10.11 torch-2.0.1+cu118 CUDA:0(Quadro P2200, 5120MiB)
  98. VOC2012 summary (fused): 168 layers, 3009548 parameters, 0 gradients
  99. ClassImagesInstancesBox(P R mAP50 mAP50-95): 100%|██████████| 536/536[02:31<00:00, 3.54it/s]
  100. all 17125349130.7770.7180.7950.621
  101. aeroplane 171259110.9240.8130.9020.731
  102. bicycle 171257530.7650.5780.7370.582
  103. bird 1712511690.8940.7570.8620.651
  104. boat 171259020.7560.6410.7260.506
  105. bottle 1712513290.7230.5940.6790.489
  106. bus 171256380.8930.8180.8940.775
  107. car 1712521050.7860.690.7990.618
  108. cat 1712512660.8520.880.9210.763
  109. chair 1712524430.7060.5610.660.482
  110. cow 171256420.7820.8040.8580.673
  111. diningtable 171256350.5910.7180.690.517
  112. dog 1712515710.8460.7950.8830.727
  113. horse 171257600.6730.6340.740.61
  114. person 17125157530.790.8390.8750.691
  115. pottedplant 1712510550.7010.5250.6140.404
  116. sheep 171258780.7750.8230.8580.665
  117. sofa 171255920.7030.6440.730.592
  118. train 171256720.8820.8440.9140.735
  119. tvmonitor 171258390.730.6770.7650.595
  120. Speed: 0.2ms preprocess, 3.9ms inference, 0.0ms loss, 0.7ms postprocess per image
  121. Results saved to runs\detect\train8
  122. Learn more at https://docs.ultralytics.com/modes/train
  123. (venv) PS E:\JetBrains\PycharmProject\Yolov8Project>

三、将run\detect\trainx\best.pt拷贝到model目录下,并改为相关可辨识的模型名称

四、执行测试代码,验证一下几个训练模型的预测结果

  1. from ultralytics import YOLO
  2. from PIL importImage
  3. filepath='test\eat.png'
  4. # 直接加载预训练模型
  5. model = YOLO('model\yolov8x.pt')
  6. # Run inference on 'bus.jpg'
  7. results = model(filepath) # results list
  8. # Show the results
  9. for r in results:
  10. im_array = r.plot() # plot a BGR numpy array of predictions
  11. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
  12. im.show() # show image
  13. im.save('yolov8x.jpg') # save image
  14. # 直接加载预训练模型
  15. model = YOLO('model\yolov8n.pt')
  16. # Run inference on 'bus.jpg'
  17. results = model(filepath) # results list
  18. # Show the results
  19. for r in results:
  20. im_array = r.plot() # plot a BGR numpy array of predictions
  21. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
  22. im.show() # show image
  23. im.save('yolov8n.jpg') # save image
  24. # 直接加载预训练模型
  25. model = YOLO('model\coco128.pt')
  26. # Run inference on 'bus.jpg'
  27. results = model(filepath) # results list
  28. # Show the results
  29. for r in results:
  30. im_array = r.plot() # plot a BGR numpy array of predictions
  31. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
  32. im.show() # show image
  33. im.save('coco128.jpg') # save image
  34. # 直接加载预训练模型
  35. model = YOLO('model\VOC2012.pt')
  36. # Run inference on 'bus.jpg'
  37. results = model(filepath) # results list
  38. # Show the results
  39. for r in results:
  40. im_array = r.plot() # plot a BGR numpy array of predictions
  41. im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
  42. im.show() # show image
  43. im.save('VOC2012.jpg') # save image

基于yolov8x.pt预训练模型预测情况如下:

1355189e51ea01045b281c0ce229ee2f.png

基于yolov8n.pt预训练模型预测情况如下:

8dc01c40742a46063699c165076ca20c.png

基于coco128数据集训练的模型预测情况如下:

fb62c6a7e263170fa33a10654d5f8533.png

基于VOC2012数据集训练的模型预测情况如下:

ef0e876cc7436ee2662f2413127de64b.png

结论:

1、基于yolov8x.pt预训练模型预测的最全最准,但也最慢。

2、基于yolov8n.pt预训练模型预测和yolov8x在概率上有些不一致,80类中的极少数类别识别不出来,毕竟网络模型参数相差太多。

3、基于coco128数据集训练的模型预测类别比yolov8n少,毕竟只有128张训练样本,估计会缺失一些标签。

4、基于VOC2012数据集训练的模型预测类别最少,毕竟只有20种类别,和coco数据集有交叉也有不同,VOC2012数据集没有水果样本,所以无法识别出水果。

基本上后边就可以愉快的训练各种目标检测了,但是数据集和标注数据才是比较耗人的。

最后欢迎关注公众号:python与大数据分析

638402d7b0e4a36fee4183d77e2bb290.jpeg

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/85033
推荐阅读
相关标签
  

闽ICP备14008679号