当前位置:   article > 正文

机器学习与深度学习的基本概念_深度学习中可学习的定义

深度学习中可学习的定义

什么是人工智能?

人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。

什么是机器学习?

        在经典的程序设计(即符号主义人工智能的范式)中,人们输入的是规则(即程序)和需要根据这些规则进行处理的数据,系统输出的是答案(见图1-2)。利用机器学习,人们输入的是数据从这些数据中预期得到的答案,系统输出的是规则。这些规则随后可应用于新的数据,并使计算机自主生成答案。

        机器学习系统是训练出来的,而不是明确地用程序编写出来的。将与某个任务相关的许多示例输入机器学习系统,它会在这些示例中找到统计结构,从而最终找到规则将任务自动化。

 

机器学习将会发现执行一项数据处理任务的规则。因此,我们需要以下三个要素来进行机器学习。

输入数据点。例如,你的任务是语音识别,那么这些数据点可能是记录人们说话的声音文件。如果你的任务是为图像添加标签,那么这些数据点可能是图像。

预期输出的示例。对于语音识别任务来说,这些示例可能是人们根据声音文件整理生成的文本。对于图像标记任务来说,预期输出可能是“狗”“猫”之类的标签。

衡量算法效果好坏的方法。这一衡量方法是为了计算算法的当前输出与预期输出的差距。衡量结果是一种反馈信号,用于调节算法的工作方式。这个调节步骤就是我们所说的学习。


机器学习模型将输入数据变换为有意义的输出,这是一个从已知的输入和输出示例中进行“学习”的过程。因此,机器学习和深度学习的核心问题在于有意义地变换数据,换句话说,在于学习输入数据的有用表示(representation)——这种表示可以让数据更接近预期输出。在进一步讨论之前,我们需要先回答一个问题:什么是表示?这一概念的核心在于以一种不同的方式来查看数据(即表征数据或将数据编码)。

 

机器学习中的学习指的是,寻找更好数据表示的自动搜索过程

所有机器学习算法都包括自动寻找这样一种变换:这种变换可以根据任务将数据转化为更加有用的表示。这些操作可能是前面提到的坐标变换,也可能是线性投影(可能会破坏信息)、平移、非线性操作(比如“选择所有x>0 的点”),等等。机器学习算法在寻找这些变换时通常没有什么创造性,而仅仅是遍历一组预先定义好的操作,这组操作叫作假设空间(hypothesis space)

这就是机器学习的技术定义:在预先定义好的可能性空间中,利用反馈信号的指引来寻找输入数据的有用表示

 

什么是深度学习?

深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。

现代深度学习通常包含数十个甚至上百个连续的表示层,这些表示层全都是从训练数据中自动学习的。与此相反,其他机器学习方法的重点往往是仅仅学习一两层的数据表示,因此有时也被称为浅层学习(shallow learning)

深度学习是从数据中学习表示的一种数学框架。

深度学习算法学到的表示是什么样的?我们来看一个多层网络(见图1-5)如何对数字图像进行变换,以便识别图像中所包含的数字。

如图1-6 所示,这个网络将数字图像转换成与原始图像差别越来越大的表示,而其中关于最终结果的信息却越来越丰富。你可以将深度网络看作多级信息蒸馏操作:信息穿过连续的过滤器,其纯度越来越高(即对任务的帮助越来越大)


这就是深度学习的技术定义:学习数据表示的多级方法。这个想法很简单,但事实证明,非常简单的机制如果具有足够大的规模,将会产生魔法般的效果

用三张图理解深度学习的工作原理

机器学习是将输入(比如图像)映射到目标(比如标签“猫”),这一过程是通过观察许多输入和目标的示例来完成的。

深度神经网络通过一系列简单的数据变换(层)来实现这种输入到目标的映射,而这些数据变换都是通过观察示例学习到的。

1.神经网络中每层对输入数据所做的具体操作保存在该层的权重(weight)中,其本质是一串数字。用术语来说,每层实现的变换由其权重来参数化(parameterize,见图1-7)。权重有时也被称为该层的参数(parameter)。在这种语境下,学习的意思是为神经网络的所有层找到一组权重值,使得该网络能够将每个示例输入与其目标正确地一一对应。但重点来了:一个深度神经网络可能包含数千万个参数。找到所有参数的正确取值可能是一项非常艰巨的任务,特别是考虑到修改某个参数值将会影响其他所有参数的行为。

 

2.想要控制一件事物,首先需要能够观察它。想要控制神经网络的输出,就需要能够衡量该输出与预期值之间的距离。这是神经网络损失函数(loss function)的任务,该函数也叫目标函数(objective function)。损失函数的输入是网络预测值真实目标值(即你希望网络输出的结果),然后计算一个距离值,衡量该网络在这个示例上的效果好坏(见图1-8)。

 

3.深度学习的基本技巧利用这个距离值 作为反馈信号 来对权重值进行微调,以降低 当前示例对应的损失值(见图1-9)。这种调节由优化器(optimizer)来完成,它实现了所谓的反向传播(backpropagation)算法,这是深度学习的核心算法。下一章中会详细地解释反向传播的工作原理。

一开始对神经网络的权重随机赋值,因此网络只是实现了一系列随机变换。其输出结果自然也和理想值相去甚远,相应地,损失值也很高。但随着网络处理的示例越来越多,权重值也在向正确的方向逐步微调,损失值也逐渐降低。这就是训练循环(training loop)将这种循环重复足够多的次数(通常对数千个示例进行数十次迭代),得到的权重值可以使损失函数最小。具有最小损失的网络,其输出值与目标值尽可能地接近,这就是训练好的网络。再次强调,这是一个简单的机制,一旦具有足够大的规模,将会产生魔法般的效果。

 

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/93607
推荐阅读
相关标签
  

闽ICP备14008679号