赞
踩
open3d提供了一个专门用于点云的数据结构 PointCloud。
- class PointCloud(Geometry3D):
- color # 颜色
- normals # 法向量
- points # 点云
- def __init__(self, *args, **kwargs):
- """
- __init__(*args, **kwargs)
- Overloaded function.
- 1. __init__(self: open3d.cpu.pybind.geometry.PointCloud) -> None
- Default constructor
- 2. __init__(self: open3d.cpu.pybind.geometry.PointCloud, arg0: open3d.cpu.pybind.geometry.PointCloud) -> None
- Copy constructor
- 3. __init__(self: open3d.cpu.pybind.geometry.PointCloud, points: open3d.cpu.pybind.utility.Vector3dVector) -> None
- Create a PointCloud from points
- """
- # dbscan聚类
- def cluster_dbscan(self, eps, min_points, print_progress=False):
- # 计算凸包
- def compute_convex_hull(self):
- # 计算马氏距离。 返回每个点的马氏距离
- def compute_mahalanobis_distance(self):
- # 计算均值与协方差矩阵
- def compute_mean_and_covariance(self):
- # 计算点云每个点到其最近点的距离
- def compute_nearest_neighbor_distance(self):
- # 计算当前点云每个点到目标点云的最近距离
- def compute_point_cloud_distance(self, target):
- def create_from_depth_image(self, depth, intrinsic, extrinsic, *args, **kwargs):
- def create_from_rgbd_image(self, image, intrinsic, extrinsic, *args, **kwargs):
- # 裁剪。 输入一个aabb框或obb框
- def crop(self, *args, **kwargs):
- # 计算顶点法向量
- def estimate_normals(self, search_param=None, *args, **kwargs):
- # 是否有color
- def has_colors(self):
- # 是否有法向量
- def has_normals(self):
- # 是否有点云点
- def has_points(self):
- # 隐藏点去除。
- def hidden_point_removal(self, camera_location, radius):
- # 归一化法向量。 法向量长度为1
- def normalize_normals(self):
- # 法向量方向一致
- def orient_normals_consistent_tangent_plane(self, k):
- # 法向量方向一致。 指定相机位置
- def orient_normals_towards_camera_location(self, camera_location=None, *args, **kwargs):
- # 法向量方向一致。 指定参考方向
- def orient_normals_to_align_with_direction(self, orientation_reference=None, *args, **kwargs):
- # 上色。 颜色rgb,范围0~1
- def paint_uniform_color(self, color):
- # 随机下采样。 指定下采样率
- def random_down_sample(self, sampling_ratio):
- # 删除non 和 inf 值的点
- def remove_non_finite_points(self, remove_nan=True, remove_infinite=True):
- # 删除指定半径内少于指定点数的点
- def remove_radius_outlier(self, nb_points, radius):
- # 删除相邻点中距离大于平均距离的点
- def remove_statistical_outlier(self, nb_neighbors, std_ratio):
- # 平面分割
- def segment_plane(self, distance_threshold, ransac_n, num_iterations):
- # 按照下标筛选点云
- def select_by_index(self, indices, invert=False):
- # 下采样。 每隔多少个点取一个
- def uniform_down_sample(self, every_k_points):
- # 体素下采样。 指定体素尺寸
- def voxel_down_sample(self, voxel_size):
- # 体素下采样并记录原数据。 指定体素尺寸
- def voxel_down_sample_and_trace(self, voxel_size, min_bound, max_bound, approximate_class=False):
- import numpy as np
- import open3d as o3d
- from open3d.web_visualizer import draw
- from open3d.visualization import draw_geometries
- pcd = o3d.io.read_point_cloud('datas/fragment.ply')
- draw(pcd)
open3d.geometry.PointCloud 提供了 voxel_down_sample(self, voxel_size) 方法,来进行体素下采样操作。
- def voxel_down_sample(self, voxel_size):
- """
- voxel_down_sample(self, voxel_size)
- 对输入点云进行体素下采样,如果法线和颜色存在,则法线和颜色取均值。
- Args:
- voxel_size (float): 体素尺寸
- Returns:
- open3d.geometry.PointCloud
- """
- downsample = pcd.voxel_down_sample(voxel_size=0.05)
- draw(downsample)
open3d.geometry.PointCloud 提供了 estimate_normals(self, voxel_size) 方法,来计算顶点法向量。
- def estimate_normals(self, search_param=None, *args, **kwargs):
- """
- estimate_normals(self, search_param=KDTreeSearchParamKNN with knn = 30, fast_normal_computation=True)
- Args:
- search_param (open3d.geometry.KDTreeSearchParam, optional): 用于领域搜索的KDTree搜索参数。 默认值为:KDTreeSearchParamKNN with knn = 30
- fast_normal_computation (bool, optional, default=True): 如果为true,通过协方差矩阵计算特征向量,速度更快,但数值不稳定。如果为False,则使用迭代方式。
- Returns:
- None 无返回值,法向量直接存储于 PointCloud.normals
- """
search_param 参数有:
- downsample.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
-
- # 此处使用 draw_geometries绘制点云以及法线。
- draw_geometries([downsample], point_show_normal=True)
裁剪点云,首先需要确定裁剪区域
通过o3d.visualization.read_selection_polygon_volume()函数,读取一个多边形区域。
然后通过多边形裁剪点云。
- def read_selection_polygon_volume(filename):
- """
- read_selection_polygon_volume(filename)
- Function to read SelectionPolygonVolume from file
- Args:
- filename (str): The file path.
- Returns:
- open3d.visualization.SelectionPolygonVolume
- """
- pass
open3d.visualization.SelectionPolygonVolume 含有两个方法:
- # 读取多边形
- vol = o3d.visualization.read_selection_polygon_volume('datas/cropped.json')
- chair = vol.crop_point_cloud(pcd)
- draw(chair)
open3d.geometry.PointCloud 提供了 paint_uniform_color(self, color)方法,来为点云进行上色。
- def paint_uniform_color(self, color):
- """
- paint_uniform_color(self, color)
- Assigns each point in the PointCloud the same color.
- Args:
- color (numpy.ndarray[float64[3, 1]]):RGB颜色,值在0~1范围内
- Returns:
- open3d.geometry.PointCloud
- """
- pass
- chair.paint_uniform_color([1,0,0]) # 红色
- draw(chair)
open3d.geometry.PointCloud 提供了 compute_point_cloud_distance(self, target)方法,计算当前点云中每个点到目标点云中点的最近距离。
- def compute_point_cloud_distance(self, target):
- """
- Args:
- target (open3d.geometry.PointCloud): 目标点云
- Returns:
- open3d.utility.DoubleVector
- """
open3d.geometry.PointCloud 提供了 select_by_index(self, indices, invert=False)方法,通过下标来筛选点云。
- def select_by_index(self, indices, invert=False):
- """
- select_by_index(self, indices, invert=False)
- Args:
- indices (List[int]): 下标
- invert (bool, optional, default=False): 反选
- Returns:
- open3d.geometry.PointCloud
- """
- dists = pcd.compute_point_cloud_distance(chair) # 计算整体点云中,每个点到椅子点云中最近点的距离。
- dists = np.array(dists)
- ind = np.where(dists > 0.01)[0] # 获取距离大于0.01的点的下标
- pcd_without_chair = pcd.select_by_index(ind) # 通过下标筛选点云中点
- draw(pcd_without_chair)
o3d.geometry.Geometry3D 提供了 get_axis_aligned_bounding_box() 方法,来获取aabb包围盒(轴对齐包围盒)
- def get_axis_aligned_bounding_box(self):
- """
- get_axis_aligned_bounding_box(self)
- Returns:
- open3d.geometry.AxisAlignedBoundingBox
- """
o3d.geometry.Geometry3D 提供了 get_oriented_bounding_box() 方法,来获取obb包围盒(有向包围盒)
- def get_oriented_bounding_box(self):
- """
- Returns:
- open3d.geometry.OrientedBoundingBox
- """
- aabb = chair.get_axis_aligned_bounding_box()
- print(aabb)
- draw([chair, aabb])
- obb = chair.get_oriented_bounding_box()
- print(obb)
- draw([chair, obb])
o3d.geometry.Geometry3D 提供了 compute_convex_hull() 方法,来获取点云的凸包。
- def compute_convex_hull(self):
- """
- Returns:
- Tuple[open3d.geometry.TriangleMesh, List[int]] 返回两个值,第一个以三角形网格返回凸包,第二个返回凸包的顶点下标。
- """
- hull, ind = chair.compute_convex_hull()
-
- hull.paint_uniform_color([1,0,0])
- draw([hull, chair])
- chair.paint_uniform_color([0.5,0.5,0.5])
- points = chair.select_by_index(ind) # 红色点为凸包顶点
- points.paint_uniform_color([1,0,0])
- draw([chair, points])
open3d.geometry.PointCloud 提供了 cluster_dbscan(self, eps, min_points, print_progress=False) 方法,实现dbscan密度聚类。
- def cluster_dbscan(self, eps, min_points, print_progress=False):
- """
- cluster_dbscan(self, eps, min_points, print_progress=False)
- Args:
- eps (float):密度
- min_points (int): 形成簇的最小点数
- print_progress (bool, optional, default=False):
- Returns:
- open3d.utility.IntVector label值,int
- """
- from matplotlib import pyplot as plt
- labels = pcd.cluster_dbscan(eps=0.02, min_points=10, print_progress=True)
- labels = np.asarray(labels)
- max_label = labels.max()
- colors = plt.get_cmap("tab20")(labels / (max_label if max_label > 0 else 1))
- colors[labels < 0] = 0
- pcd.colors = o3d.utility.Vector3dVector(colors[:, :3])
-
- draw(pcd)
open3d.geometry.PointCloud 提供了 **segment_plane(self, distance_threshold, ransac_n, num_iterations)** 方法,通过RANSAC从点云中分割平面。
- def segment_plane(self, distance_threshold, ransac_n, num_iterations):
- """
- Args:
- distance_threshold (float): 点到面的最大距离
- ransac_n (int): 随机采样估计平面的点数
- num_iterations (int): 迭代次数
- Returns:
- Tuple[numpy.ndarray[float64[4, 1]], List[int]]
- """
- pcd = o3d.io.read_point_cloud('datas/fragment.ply')
- plane_model, ind = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
-
- plane = pcd.select_by_index(ind)
- plane.paint_uniform_color([1,0,0])
- without_plane = pcd.select_by_index(ind, True)
- draw([plane, without_plane])
open3d.geometry.PointCloud 提供了 hidden_point_removal(self, camera_location, radius) 方法。
- def hidden_point_removal(self, camera_location, radius):
- """
- Args:
- camera_location (numpy.ndarray[float64[3, 1]]): All points not visible from that location will be reomved
- radius (float): The radius of the sperical projection
- Returns:
- Tuple[open3d.geometry.TriangleMesh, List[int]]
- """
- diameter = np.linalg.norm(np.asarray(pcd.get_max_bound()) - np.asarray(pcd.get_min_bound()))
- camera = [0, 0, diameter]
- radius = diameter * 100
- _, pt_map = pcd.hidden_point_removal(camera, radius)
-
- pcd = pcd.select_by_index(pt_map)
- draw(pcd)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。