当前位置:   article > 正文

[NLP]基于IMDB影评情感分析之BERT实战-测试集上92.24%_bert imdb

bert imdb

系列文章目录

深度学习NLP(一)之Attention Model;
深度学习NLP(二)之Self-attention, Muti-attention和Transformer;
深度学习NLP(三)之ELMO、BERT、GPT
深度学习NLP(四) 之IMDB影评情感分析之BERT实战


0. 前言

Imdb影评的数据集介绍与下载

下面我用三种方法来训练Bert用IMDB影评数据集

1. 什么是WordPiece

现在基本性能好一些的NLP模型,例如OpenAI GPT,google的BERT,在数据预处理的时候都会有WordPiece的过程。WordPiece字面理解是把word拆成piece一片一片,其实就是这个意思。

WordPiece的一种主要的实现方式叫做BPE(Byte-Pair Encoding)双字节编码

BPE的过程可以理解为把一个单词再拆分,使得我们的此表会变得精简,并且寓意更加清晰。

比如"loved",“loving”,"loves"这三个单词。其实本身的语义都是“爱”的意思,但是如果我们以单词为单位,那它们就算不一样的词,在英语中不同后缀的词非常的多,就会使得词表变的很大,训练速度变慢,训练的效果也不是太好。

BPE算法通过训练,能够把上面的3个单词拆分成"lov",“ed”,“ing”,"es"几部分,这样可以把词的本身的意思和时态分开,有效的减少了词表的数量。

在Bert 里做法其实是先查找这个单词是否存在在里,如果不存在,那么会尝试分成两个词。
例如"tokenizer" --> “token”,"##izer"

2. 第一种方法-利用Google-search在git-hub开源的代码训练Bert

2.1 所需环境

1.1.1 如果有GPU的话。

conda install python=3.6
conda install tensorflow-gpu=1.11.0
  • 1
  • 2

如果没有GPU, cpu版本的Tensorflow也可以。只是跑的慢而已

pip install tensorflow=1.11.0
  • 1

1.1.2 在GitHub上下载google-search开源的bert代码
在这里插入图片描述
1.1.3 下载Bert的模型参数uncased_L-12_H-768_A-12, 解压
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
在这里插入图片描述

2.2 代码修改与介绍

打开run_classifier.py 文件, 加入下面这个ImdbProcessor。
数据集imdb_train.npz,imdb_test.npz和imdb_val.npz可以看我下面这个博客
Imdb影评的数据集介绍与下载


class ImdbProcessor(DataProcessor):
  """Processor for the MRPC data set (GLUE version)."""

  def get_train_examples(self, data_dir):
      data = np.load('./data/imdb_train.npz')
      return self._create_examples(data, 'train')

  def get_dev_examples(self, data_dir):
      data = np.load('./data/imdb_val.npz')
      return self._create_examples(data, 'val')

  def get_test_examples(self, data_dir):
      data = np.load('./data/imdb_test.npz')
      return self._create_examples(data,'test')


  def get_labels(self):
    """See base class."""
    return ["0", "1"]

  def _create_examples(self, train_data, set_type):
    """Creates examples for the training and dev sets."""
    X = train_data['x']
    Y = train_data['y']
    examples = []
    i = 0
    for data, label in zip(X, Y):
        guid = "%s-%s" % (set_type, i)
        text_a = tokenization.convert_to_unicode(data)

        label1 = tokenization.convert_to_unicode(str(label))
        examples.append(InputExample(guid=guid, text_a=text_a, label=label1))
        i = i + 1
    return examples
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

搜main()方法在run_classifier.py文件里,然后加一下你刚才写的ImdbProcessor类
在这里插入图片描述
运行run_classifier.py用命令行。

export BERT_BASE_DIR=.\data\uncased_L-12_H-768_A-12
export DATASET=../data/

python run_classifier.py \
  --data_dir=$DATASET \
  --task_name=imdb \
  --vocab_file=$BERT_BASE_DIR/vocab.txt \
  --bert_config_file=$BERT_BASE_DIR/bert_config.json \
  --output_dir=../output/ \
  --do_train=true \
  --do_eval=true \
  --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
  --max_seq_length=200 \
  --train_batch_size=16 \
  --learning_rate=5e-5\
  --num_train_epochs=2.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

或者用pycharm运行, 通过run菜单进去的然后输入下面的参数。
注意,你要修改两个目录的参数,第一个时数据集(我的时./data/),第二个是模型的目录(我的是D:\train_data\uncased_L-12_H-768_A-12)

--data_dir=./data/ --task_name=imdb --vocab_file=D:\train_data\uncased_L-12_H-768_A-12\vocab.txt --bert_config_file=D:\train_data\uncased_L-12_H-768_A-12\bert_config.json --output_dir=../output/ --do_train=true --do_eval=true --init_checkpoint=D:\train_data\uncased_L-12_H-768_A-12\bert_model.ckpt --max_seq_length=200 --train_batch_size=16 --learning_rate=5e-5 --num_train_epochs=2.0
  • 1

在这里插入图片描述
然后执行run_classifier.py
差不多2小时左右在GPU上就结果了。准确率92.24%
在这里插入图片描述

3. 第二种方法-利用 tensorflow_hub与bert-tensorflow训练Bert

所需环境

conda install python=3.6
conda install tensorflow-gpu=1.11.0
conda install tensorflow-hub
pip install bert-tensorflow
  • 1
  • 2
  • 3
  • 4

代码介绍

import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
from datetime import datetime
import bert
from bert import run_classifier
from bert import optimization
from bert import tokenization
import numpy as np


OUTPUT_DIR = 'output1'
def download_and_load_datasets():
  train_data = np.load('./data/bert_train.npz')
  test_data = np.load('./data/bert_test.npz')

  train_df = pd.DataFrame({'sentence':train_data['x'], 'polarity':train_data['y']})
  test_df = pd.DataFrame({'sentence':test_data['x'], 'polarity':test_data['y']})
  return train_df, test_df


# This is a path to an uncased (all lowercase) version of BERT
BERT_MODEL_HUB = "D:/train_data/tf-hub/bert_uncased_L-12_H-768_A-12_1"

def create_tokenizer_from_hub_module():
  """Get the vocab file and casing info from the Hub module."""
  with tf.Graph().as_default():
    bert_module = hub.Module(BERT_MODEL_HUB)
    tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
    with tf.Session() as sess:
      vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"], tokenization_info["do_lower_case"]])

  return bert.tokenization.FullTokenizer(
    vocab_file=vocab_file, do_lower_case=do_lower_case)

# We'll set sequences to be at most 128 tokens long.
MAX_SEQ_LENGTH = 128
# label_list is the list of labels, i.e. True, False or 0, 1 or 'dog', 'cat'
label_list = [0, 1]

def getDataSet():
    train, test = download_and_load_datasets()
    #train = train.sample(5000)
    #test = test.sample(5000)

    DATA_COLUMN = 'sentence'
    LABEL_COLUMN = 'polarity'

    # Use the InputExample class from BERT's run_classifier code to create examples from the data
    train_InputExamples = train.apply(lambda x: bert.run_classifier.InputExample(guid=None,
                                                                                 # Globally unique ID for bookkeeping, unused in this example
                                                                                 text_a=x[DATA_COLUMN],
                                                                                 text_b=None,
                                                                                 label=x[LABEL_COLUMN]), axis=1)

    test_InputExamples = test.apply(lambda x: bert.run_classifier.InputExample(guid=None, text_a=x[DATA_COLUMN], text_b=None, label=x[LABEL_COLUMN]), axis=1)
    tokenizer = create_tokenizer_from_hub_module()

    tokenizer.tokenize("This here's an example of using the BERT tokenizer")

    # Convert our train and test features to InputFeatures that BERT understands.
    train_features = bert.run_classifier.convert_examples_to_features(train_InputExamples, label_list, MAX_SEQ_LENGTH,tokenizer)
    test_features = bert.run_classifier.convert_examples_to_features(test_InputExamples, label_list, MAX_SEQ_LENGTH, tokenizer)
    return train_features, test_features


def create_model(is_predicting, input_ids, input_mask, segment_ids, labels,
                 num_labels):
  """Creates a classification model."""

  bert_module = hub.Module(BERT_MODEL_HUB,trainable=True)
  bert_inputs = dict(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids)
  bert_outputs = bert_module(inputs=bert_inputs, signature="tokens", as_dict=True)

  # Use "pooled_output" for classification tasks on an entire sentence.
  # Use "sequence_outputs" for token-level output.
  output_layer = bert_outputs["pooled_output"]
  hidden_size = output_layer.shape[-1].value
  print('hidden_size=',hidden_size)

  # Create our own layer to tune for politeness data.
  output_weights = tf.get_variable("output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable("output_bias", [num_labels], initializer=tf.zeros_initializer())

  with tf.variable_scope("loss"):

    # Dropout helps prevent overfitting
    output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    # Convert labels into one-hot encoding
    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

    predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))
    # If we're predicting, we want predicted labels and the probabiltiies.
    if is_predicting:
      return (predicted_labels, log_probs)

    # If we're train/eval, compute loss between predicted and actual label
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, predicted_labels, log_probs)


# model_fn_builder actually creates our model function
# using the passed parameters for num_labels, learning_rate, etc.
def model_fn_builder(num_labels, learning_rate, num_train_steps, num_warmup_steps):
    """Returns `model_fn` closure for TPUEstimator."""

    def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
        """The `model_fn` for TPUEstimator."""

        input_ids = features["input_ids"]
        input_mask = features["input_mask"]
        segment_ids = features["segment_ids"]
        label_ids = features["label_ids"]

        is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)

        # TRAIN and EVAL
        if not is_predicting:

            (loss, predicted_labels, log_probs) = create_model(is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)

            train_op = bert.optimization.create_optimizer(loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)

            # Calculate evaluation metrics.
            def metric_fn(label_ids, predicted_labels):
                accuracy = tf.metrics.accuracy(label_ids, predicted_labels)
                f1_score = tf.contrib.metrics.f1_score( label_ids, predicted_labels)
                auc = tf.metrics.auc(label_ids,predicted_labels)
                recall = tf.metrics.recall( label_ids, predicted_labels)
                precision = tf.metrics.precision(label_ids,predicted_labels)
                true_pos = tf.metrics.true_positives(label_ids,predicted_labels)
                true_neg = tf.metrics.true_negatives(label_ids, predicted_labels)
                false_pos = tf.metrics.false_positives( label_ids, predicted_labels)
                false_neg = tf.metrics.false_negatives( label_ids,predicted_labels)
                return {"eval_accuracy": accuracy, "f1_score": f1_score,"auc": auc,"precision": precision,"recall": recall,
                    "true_positives": true_pos,"true_negatives": true_neg, "false_positives": false_pos,"false_negatives": false_neg
                }

            eval_metrics = metric_fn(label_ids, predicted_labels)

            if mode == tf.estimator.ModeKeys.TRAIN:
                return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
            else:
                return tf.estimator.EstimatorSpec(mode=mode,loss=loss,eval_metric_ops=eval_metrics)
        else:
            (predicted_labels, log_probs) = create_model(is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)

            predictions = {'probabilities': log_probs,'labels': predicted_labels}
            return tf.estimator.EstimatorSpec(mode, predictions=predictions)

    # Return the actual model function in the closure
    return model_fn

# Compute train and warmup steps from batch size
# These hyperparameters are copied from this colab notebook (https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb)
BATCH_SIZE = 16
LEARNING_RATE = 2e-5
NUM_TRAIN_EPOCHS = 3.0
# Warmup is a period of time where hte learning rate
# is small and gradually increases--usually helps training.
WARMUP_PROPORTION = 0.1
# Model configs
SAVE_CHECKPOINTS_STEPS = 500
SAVE_SUMMARY_STEPS = 100


def get_estimator(train_features):
    # Compute # train and warmup steps from batch size
    num_train_steps = int(len(train_features) / BATCH_SIZE * NUM_TRAIN_EPOCHS)
    num_warmup_steps = int(num_train_steps * WARMUP_PROPORTION)

    # Specify output directory and number of checkpoint steps to save
    run_config = tf.estimator.RunConfig(model_dir=OUTPUT_DIR,save_summary_steps=SAVE_SUMMARY_STEPS, save_checkpoints_steps=SAVE_CHECKPOINTS_STEPS)

    model_fn = model_fn_builder(num_labels=len(label_list),learning_rate=LEARNING_RATE, num_train_steps=num_train_steps,num_warmup_steps=num_warmup_steps)

    estimator = tf.estimator.Estimator(model_fn=model_fn, config=run_config, params={"batch_size": BATCH_SIZE})
    return estimator

def train_bert_model(train_features):
    num_train_steps = int(len(train_features) / BATCH_SIZE * NUM_TRAIN_EPOCHS)
    estimator =  get_estimator(train_features)

    # Create an input function for training. drop_remainder = True for using TPUs.
    train_input_fn = bert.run_classifier.input_fn_builder(features=train_features, seq_length=MAX_SEQ_LENGTH, is_training=True, drop_remainder=False)

    print(f'Beginning Training!')
    current_time = datetime.now()
    estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
    print("Training took time ", datetime.now() - current_time)



def test_bert_model(test_features):
    estimator = get_estimator(test_features)
    test_input_fn = run_classifier.input_fn_builder(features=test_features,seq_length=MAX_SEQ_LENGTH,is_training=False,  drop_remainder=False)
    test_result = estimator.evaluate(input_fn=test_input_fn, steps=None)
    print(test_result)

def getPrediction(in_sentences, train_features):
  estimator = get_estimator(train_features)

  labels = ["Negative", "Positive"]
  tokenizer = create_tokenizer_from_hub_module()
  input_examples = [run_classifier.InputExample(guid="", text_a = x, text_b = None, label = 0) for x in in_sentences] # here, "" is just a dummy label
  input_features = run_classifier.convert_examples_to_features(input_examples, label_list, MAX_SEQ_LENGTH, tokenizer)
  predict_input_fn = run_classifier.input_fn_builder(features=input_features, seq_length=MAX_SEQ_LENGTH, is_training=False, drop_remainder=False)
  predictions = estimator.predict(predict_input_fn)
  return [(sentence, prediction['probabilities'], labels[prediction['labels']]) for sentence, prediction in zip(in_sentences, predictions)]


def predict(train_features):
    pred_sentences = [
        "That movie was absolutely awful",
        "The acting was a bit lacking",
        "The film was creative and surprising",
        "Absolutely fantastic!"
    ]

    predictions = getPrediction(pred_sentences,train_features)
    print(predictions)
def main(_):
    train_features, test_features = getDataSet()
    print(type(train_features), len(train_features))
    print(type(test_features), len(test_features))
    train_bert_model(train_features)
    test_bert_model(test_features)
    #predict(train_features)

if __name__ == '__main__':
    tf.app.run()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238

执行结果,准确率89.81%

{'auc': 0.89810693, 'eval_accuracy': 0.8981, 'f1_score': 0.897557, 'false_negatives': 501.0, 'false_positives': 518.0, 'loss': 0.52041256, 'precision': 0.8960257, 'recall': 0.8990936, 'true_negatives': 4517.0, 'true_positives': 4464.0, 'global_step': 6750}

  • 1
  • 2

4. 第三种方法-利用huggingFace的Transformer训练Bert

3.1. 所需环境

安装transformers

pip install transformers
  • 1

下载Bert预训练数据集bert-base-uncasedHuggingFace的官网

注意bert-base-uncased-tf_model.h5或bert-base-uncased-pytorch_model.bin是二选择一
一个是pytorch的,一个是tensorflow的

https://cdn.huggingface.co/bert-base-uncased-tf_model.h5
https://cdn.huggingface.co/bert-base-uncased-pytorch_model.bin
https://cdn.huggingface.co/bert-base-uncased-vocab.txt
https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json
  • 1
  • 2
  • 3
  • 4

下载后放在同一个文件夹下比如bert-base-uncased
对每一个文件改名
bert-base-uncased-tf_model.h5 --> tf_model.h5
bert-base-uncased-pytorch_model.bin - > pytorch_model.bin
bert-base-uncased-vocab.txt -->vocab.txt
bert-base-uncased-config.json --> config.json

4.2. 代码解释

imdb_train.npz与imdb_test.npz数据文件参数可以看下面博客
Imdb影评的数据集介绍与下载

Transformer包是HuggingFace公司基于Google开源的bert做了一个封装。使得用起来更方便

下面代码的功能和tokenizer.encode_plus()功能是一样的。

from transformers import BertTokenizer
bert_weight_folder = r'D:\train_data\bert\bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(bert_weight_folder, do_lower_case=True)


max_length_test = 20
test_sentence = 'Test tokenization sentence. Followed by another sentence'

# add special tokens
test_sentence_with_special_tokens = '[CLS]' + test_sentence + '[SEP]'
tokenized = tokenizer.tokenize(test_sentence_with_special_tokens)
print('tokenized', tokenized)

# convert tokens to ids in WordPiece
input_ids = tokenizer.convert_tokens_to_ids(tokenized)
  
# precalculation of pad length, so that we can reuse it later on
padding_length = max_length_test - len(input_ids)

# map tokens to WordPiece dictionary and add pad token for those text shorter than our max length
input_ids = input_ids + ([0] * padding_length)

# attention should focus just on sequence with non padded tokens
attention_mask = [1] * len(input_ids)

# do not focus attention on padded tokens
attention_mask = attention_mask + ([0] * padding_length)

# token types, needed for example for question answering, for our purpose we will just set 0 as we have just one sequence
token_type_ids = [0] * max_length_test
bert_input = {
    "token_ids": input_ids,
    "token_type_ids": token_type_ids,
    "attention_mask": attention_mask
} print(bert_input)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
tokenized ['[CLS]', 'test', 'token', '##ization', 'sentence', '.', 'followed', 'by', 'another', 'sentence', '[SEP]']
{
  'token_ids': [101, 3231, 19204, 3989, 6251, 1012, 2628, 2011, 2178, 6251, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0],
  'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
  'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

完整的代码时如下:

import tensorflow as tf
import os as os
import numpy as np
from transformers import BertTokenizer
from transformers import TFBertForSequenceClassification
import tensorflow as tf
from sklearn.model_selection import train_test_split

max_length = 200
batch_size = 16
learning_rate = 2e-5
number_of_epochs = 10
bert_weight_folder = r'D:\train_data\bert\bert-base-uncased'

tokenizer = BertTokenizer.from_pretrained(bert_weight_folder, do_lower_case=True)

def convert_example_to_feature(review):
    return tokenizer.encode_plus(review,
                                 add_special_tokens=True,  # add [CLS], [SEP]
                                 max_length=max_length,  # max length of the text that can go to BERT
                                 pad_to_max_length=True,  # add [PAD] tokens
                                 return_attention_mask=True,  # add attention mask to not focus on pad tokens
                                 truncation=True
                                 )


# map to the expected input to TFBertForSequenceClassification, see here
def map_example_to_dict(input_ids, attention_masks, token_type_ids, label):
    return {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_masks,}, label


def encode_examples(x, y , limit=-1):
    # prepare list, so that we can build up final TensorFlow dataset from slices.
    input_ids_list = []
    token_type_ids_list = []
    attention_mask_list = []
    label_list = []

    for review, label in zip(x, y ):
        bert_input = convert_example_to_feature(review)

        input_ids_list.append(bert_input['input_ids'])
        token_type_ids_list.append(bert_input['token_type_ids'])
        attention_mask_list.append(bert_input['attention_mask'])
        label_list.append([label])

        print('input_ids_list', input_ids_list)
        print('token_type_ids_list', token_type_ids_list)
        print('attention_mask_list', attention_mask_list)

    return tf.data.Dataset.from_tensor_slices( (input_ids_list, attention_mask_list, token_type_ids_list, label_list)).map(map_example_to_dict)

def get_raw_dataset():
    train_data = np.load('./data/bert_train.npz')
    test_data = np.load('./data/bert_test.npz')
    val_data = np.load('./data/bert_val.npz')


    print("X_train:", train_data['x'].shape)
    print("y_train:", train_data['y'].shape)
    print("X_test:", test_data['x'].shape)
    print("y_test:", test_data['y'].shape)
    print("X_val:", val_data['x'].shape)
    print("y_val:", val_data['y'].shape)

    return train_data['x'], train_data['y'], test_data['x'], test_data['y'], val_data['x'], val_data['y']

def get_dataset():
    x_train, y_train, x_test, y_test, x_val , y_val= get_raw_dataset()
    ds_train_encoded = encode_examples(x_train, y_train).shuffle(10000).batch(batch_size)

    # test dataset
    ds_test_encoded = encode_examples(x_test, y_test).batch(batch_size)
    ds_val_encoded = encode_examples(x_val, y_val).batch(batch_size)

    return ds_train_encoded, ds_test_encoded, ds_val_encoded

def get_module():
    # model initialization
    model = TFBertForSequenceClassification.from_pretrained(bert_weight_folder)
    print(dir(model))

    # classifier Adam recommended
    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate, epsilon=1e-08)

    # we do not have one-hot vectors, we can use sparce categorical cross entropy and accuracy
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
    metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')

    model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

    print(model.summary())
    return model

root_folder = r'.\bert'
weight_dir = root_folder + '\weight.h5'
def train_bert_module(model, ds_train_encoded, ds_val_encoded):
    if os.path.isfile(weight_dir):
        print('load weight')
        model.load_weights(weight_dir)

    current_max_loss = 9999
    def save_weight(epoch, logs):
        global current_max_loss
        if (logs['val_loss'] is not None and logs['val_loss'] < current_max_loss):
            current_max_loss = logs['val_loss']
            print('save_weight', epoch, current_max_loss)
            model.save_weights(weight_dir)
            # model.save(root_folder + '\module.h5', include_optimizer=False, save_format="tf")

    batch_print_callback = tf.keras.callbacks.LambdaCallback(
        on_epoch_end=save_weight
    )
    callbacks = [
        tf.keras.callbacks.EarlyStopping(patience=4, monitor='loss'),
        batch_print_callback,
        # tf.keras.callbacks.TensorBoard(log_dir=root_folder + '\logs')
    ]

    print('start')
    bert_history = model.fit(ds_train_encoded, epochs=number_of_epochs, validation_data=ds_val_encoded, callbacks=callbacks)
    print('bert_history', bert_history)


def test_bert_module(model, ds_test_encoded):
    if os.path.isfile(weight_dir):
        print('load weight')
        model.load_weights(weight_dir)

    scores = model.evaluate(ds_test_encoded)
    print(scores)

if __name__ == '__main__':
    ds_train_encoded, ds_test_encoded, ds_val_encoded =  get_dataset()
    bert_module = get_module()
    train_bert_module(bert_module,ds_train_encoded, ds_val_encoded)
    test_bert_module(bert_module, ds_test_encoded)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138

结果 第一个epoch 测试集上准确率就已经是90.72%,
不够速度的很慢,大概1小时左右吧在GPU训练,如果是CPU那就得最少12小时了。

2186/2188 [============================>.] - ETA: 0s - loss: 0.2793 - accuracy: 0.8811
2187/2188 [============================>.] - ETA: 0s - loss: 0.2793 - accuracy: 0.8811
2188/2188 [==============================] - 1023s 467ms/step - loss: 0.2793 - accuracy: 0.8811 - val_loss: 0.2340 - val_accuracy: 0.9072
  • 1
  • 2
  • 3

第二个epoch 测试集上准确率是90.78%, 有点过拟合了

2186/2188 [============================>.] - ETA: 0s - loss: 0.1526 - accuracy: 0.9438
2187/2188 [============================>.] - ETA: 0s - loss: 0.1526 - accuracy: 0.9438
2188/2188 [==============================] - 1010s 462ms/step - loss: 0.1526 - accuracy: 0.9438 - val_loss: 0.2995 - val_accuracy: 0.9078
  • 1
  • 2
  • 3

第三个epoch 测试集上准确率是91.46%

2186/2188 [============================>.] - ETA: 0s - loss: 0.0758 - accuracy: 0.9747
2187/2188 [============================>.] - ETA: 0s - loss: 0.0758 - accuracy: 0.9747
2188/2188 [==============================] - 1007s 460ms/step - loss: 0.0757 - accuracy: 0.9747 - val_loss: 0.2978 - val_accuracy: 0.9146
  • 1
  • 2
  • 3

第四个epoch 测试集上准确率是91.35%

2185/2188 [============================>.] - ETA: 1s - loss: 0.0425 - accuracy: 0.9862
2186/2188 [============================>.] - ETA: 0s - loss: 0.0425 - accuracy: 0.9861
2187/2188 [============================>.] - ETA: 0s - loss: 0.0425 - accuracy: 0.9861
2188/2188 [==============================] - 999s 457ms/step - loss: 0.0425 - accuracy: 0.9861 - val_loss: 0.3121 - val_accuracy: 0.9135
  • 1
  • 2
  • 3
  • 4

4.3. 可能遇到的问题

ModuleNotFoundError: No module named ‘tools.nnwrap’

安装pytorch时遇到下面问题

解决方法是手动安装pytorch的相关whl.
访问这个网站,https://download.pytorch.org/whl/torch_stable.html
下载torch-1.1.0-cp36-cp36m-win_amd64.whl和torchvision-0.3.0-cp36-cp36m-win_amd64.whl
然后安装
pip install yourfolder\torch-1.1.0-cp36-cp36m-win_amd64.whl
pip install yourfolder\torchvision-0.3.0-cp36-cp36m-win_amd64.whl

或者直接根据pytorch官网命令直接安装。但是我的没有成功,可能是因为我的网络的问题
https://pytorch.org/

5. 其它补充

tokens --> { input_ids, input_mask, segment_ids}
Bert 模型的输入参数 {guid,input_ids, input_mask, segment_ids}

在这里插入图片描述
一段tensorflow的日志

I0818 00:30:55.294839  4156 run_classifier.py:465] guid: None
INFO:tensorflow:tokens: [CLS] this here ' s an example of using the bert token ##izer [SEP] fuck you [SEP]
I0818 00:30:55.294839  4156 run_classifier.py:467] tokens: [CLS] this here ' s an example of using the bert token ##izer [SEP] fuck you [SEP]
INFO:tensorflow:input_ids: 101 2023 2182 1005 1055 2019 2742 1997 2478 1996 14324 19204 17629 102 6616 2017 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I0818 00:30:55.294839  4156 run_classifier.py:468] input_ids: 101 2023 2182 1005 1055 2019 2742 1997 2478 1996 14324 19204 17629 102 6616 2017 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I0818 00:30:55.294839  4156 run_classifier.py:469] input_mask: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I0818 00:30:55.294839  4156 run_classifier.py:470] segment_ids: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFO:tensorflow:label: 0 (id = 0)
I0818 00:30:55.294839  4156 run_classifier.py:471] label: 0 (id = 0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

6. 总结

Bert 这个模型特别吃内存和CPU, 训练的时候特别的慢。最好用GPU吧。不然一个epoch一天都跑不完啊。
一个epoch测试集上准确率就已经是90.72%,很高了,但是第二个epoch准确没怎么提高,应该是过拟合。

7. 参考资料

[1] https://github.com/atherosai/python-graphql-nlp-transformers/tree/master/notebooks/BERT%20fine-tunning%20in%20Tensorflow%202%20with%20Keras%20API
[2] https://medium.com/atheros/text-classification-with-transformers-in-tensorflow-2-bert-2f4f16eff5ad
[3] HuggingFace的官网
[4] google-search的Bert开源代码在gitbub上的链接

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/一键难忘520/article/detail/741519
推荐阅读
相关标签
  

闽ICP备14008679号