当前位置:   article > 正文

ES(Elasticsearch)的基本使用

es

一、常见的NoSQL解决方案

1、redis

Redis是一个基于内存的 key-value 结构数据库。Redis是一款采用key-value数据存储格式的内存级NoSQL数据库,重点关注数据存储格式,是key-value格式,也就是键值对的存储形式。与MySQL数据库不同,MySQL数据库有表、有字段、有记录,Redis没有这些东西,就是一个名称对应一个值,并且数据以存储在内存中使用为主。redis的基本使用

2、mongodb

  1. MongoDB可以在内存中存储类似对象的数据并实现数据的快速访问。
  2. 使用Redis技术可以有效的提高数据访问速度,但是由于Redis的数据格式单一性,无法操作结构化数据,当操作对象型的数据时,Redis就显得捉襟见肘。在保障访问速度的情况下,如果想操作结构化数据,看来Redis无法满足要求了,此时需要使用全新的数据存储结束来解决此问题,即MongoDB技术。mongodb的基本使用

3、ES(Elasticsearch)

  1. ES(Elasticsearch)是一个分布式全文搜索引擎,重点是全文搜索。

二、ES的使用

ES简介

  1. es是由Apache开源的一个兼有搜索引擎和NoSQL数据库功能的系统,其特点主要如下。
      1. 基于Java/Lucene构建,支持全文搜索、结构化搜索(应用于加速数据的查询)
      1. 低延迟,支持实时搜索
      1. 分布式部署,可横向集群扩展
      1. 支持百万级数据
      1. 支持多条件复杂查询,如聚合查询
      1. 高可用性,数据可以进行切片备份
      1. 支持Restful风格的api调用

全文搜索

  1. 全文搜索的理解
    比如用户要在淘宝上买一本书(Java开发),那么他就可以以Java为关键字进行搜索,不管是书名中还是书的介绍中,甚至是书的作者名字,只要包含java就作为查询结果返回给用户查看。这就可以理解为全文搜索。

    • 搜索的条件不再是仅用于对某一个字段进行比对,而是在一条数据中使用搜索条件去比对更多的字段,只要能匹配上就列入查询结果,这就是全文搜索的目的。而ES技术就是一种可以实现上述效果的技术。
  2. 全文搜索的实现
    要实现全文搜索的效果,不可能使用数据库中like操作去进行比对,这种效率太低了。ES设计了一种全新的思想,来实现全文搜索。具体操作过程如下:

      1. 被查询的字段的数据全部文本信息进行拆分,分成若干个词
      • 例如“中华人民共和国”就会被拆分成三个词,分别是“中华”、“人民”、“共和国”,此过程有专业术语叫做分词。分词的策略不同,分出的效果不一样,不同的分词策略称为分词器。
      1. 将分词得到的结果存储起来,对应每条数据的id
      • 例如id为1的数据中名称这一项的值是“中华人民共和国”,那么分词结束后,就会出现“中华”对应id为1,“人民”对应id为1,“共和国”对应id为1
      • 例如id为2的数据中名称这一项的值是“人民代表大会“,那么分词结束后,就会出现“人民”对应id为2,“代表”对应id为2,“大会”对应id为2
      • 此时就会出现如下对应结果,按照上述形式可以对所有文档进行分词。需要注意分词的过程不是仅对一个字段进行,而是对每一个参与查询的字段都执行,最终结果汇总到一个表格中
    分词结果关键字对应id
    中华1
    人民1,2
    共和国1
    代表2
    大会2
      1. 当进行查询时,如果输入“人民”作为查询条件,可以通过上述表格数据进行比对,得到id值1,2,然后根据id值就可以得到查询的结果数据了。
  3. ​上述过程中分词结果关键字内容每一个都不相同,作用有点类似于数据库中的索引,是用来加速数据查询的。

    • 但是数据库中的索引是对某一个字段进行添加索引,而这里的分词结果关键字不是一个完整的字段值,只是一个字段中的其中的一部分内容。并且索引使用时是根据索引内容查找整条数据,全文搜索中的分词结果关键字查询后得到的并不是整条的数据,而是数据的id,要想获得具体数据还要再次查询,因此这里为这种分词结果关键字起了一个全新的名称,叫做倒排索引

ES的应用场景

  1. ES作为全文检索的搜索引擎,在以下几个方面都存在着相应的应用:
      1. 监控。针对日志类数据进行存储、分析、可视化。针对日志数据,ES给出了ELK的解决方案。其中logstash采集日志,ES进行复杂的数据分析,kibana进行可视化展示。
      1. 电商网站。用于商品信息检索。
      1. Json文档数据库。用于存放json格式的文档
      1. 维基百科。提供全文搜索并高亮关键字

Es的windows版安装

  1. windows版安装包下载地址:https://www.elastic.co/cn/downloads/elasticsearch

    • 下载zip文件,然后直接解压即可,解压完的目录如下:(data目录,是使用了数据库后自己给你创建的,里面的存放的就是你ES数据库的文件)
      在这里插入图片描述
  2. ES的运行:在bin目录下,双击elasticserach.bat文件。(默认端口号:9200)
    在这里插入图片描述
    在这里插入图片描述
    然后访问:http://localhost:9200/,看到下面的json数据后,表示es已经启动成功。
    在这里插入图片描述

ES的基础操作

ES的基础操作-----索引操作

  1. 对于mysql数据库,我们一般需要创建数据库之后才能继续操作,而ES则需要创建索引之后才能继续操作。
    • 对于es的操作,我们只需要发web请求就可以了。要操作ES可以通过Rest风格的请求来进行(因为它支持rest风格,可以使用postman进行操作),也就是说发送一个请求就可以执行一个操作。比如新建索引,删除索引这些操作都可以使用发送请求的形式来进行。
  2. ES中保存的数据,只是格式和数据库存储的数据格式 与我们的mysql等数据库不同而已。
    • 在ES中我们要先创建倒排索引,这个索引的功能又有点类似于数据库的表。
    • 然后将数据添加到倒排索引中,添加的数据称为文档
    • 所以要进行ES的操作要先创建索引,再添加文档,这样才能进行后续的查询操作。
不具备分词效果的索引的创建(没有指定分词器)

创建索引:注意这里使用的请求方式是put而不是post
在这里插入图片描述
获取索引

在这里插入图片描述
获取无分词器的索引返回的信息:

{
    "book": {
        "aliases": {},
        "mappings": {},
        "settings": {
            "index": {
                "routing": {
                    "allocation": {
                        "include": {
                            "_tier_preference": "data_content"
                        }
                    }
                },
                "number_of_shards": "1",
                "provided_name": "book",
                "creation_date": "1704103713618",
                "number_of_replicas": "1",
                "uuid": "1mabgD9eR7WvHVZeCBfVqw",
                "version": {
                    "created": "7160299"
                }
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

删除索引
在这里插入图片描述

利用分词器进行创建索引(创建索引并指定分词器)

  1. 我们在创建索引时,可以添加请求参数,设置分词器。
  2. ik分词器的下载:https://github.com/medcl/elasticsearch-analysis-ik/releases
  3. 分词器下载后解压到ES安装目录的plugins目录中即可,安装分词器后需要重新启动ES服务器。使用IK分词器创建索引格式:

创建带分词器的索引:创建索引并指定规则
在这里插入图片描述

参数数据如下:

{
    "mappings":{        //mapping表示:定义mappings属性,替换创建索引时对应的mappings属性
        "properties":{  // properties表示:定义索引中包含的属性设置(属性是自定义的)
            "id":{       // 设置索引中包含id属性(相当于数据库表中创建一个id字段)
                "type":"keyword"    //设置当前属性为关键字,可以被直接搜索
            },
            "name":{             // 设置索引中包含name属性
                "type":"text",      //设置当前属性是文本信息,参与分词 
                "analyzer":"ik_max_word",  //选择当前属性的分词策略,这里表示使用IK分词器进行分词    
                "copy_to":"all" // 表示把分词结果拷贝到all属性中,即all属性中也有name属性同样的作用
            },
            "type":{
                "type":"keyword"
            },
            "description":{
                "type":"text",
                "analyzer":"ik_max_word",
                "copy_to":"all"
            },
            "all":{  //all是一个定义属性(虚拟的属性,数据库中不存在的属性),用来描述多个字段的分词结果集合,当前属性可以参与查询
                "type":"text",
                "analyzer":"ik_max_word"
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26

查询带分词器的索引
在这里插入图片描述
返回值:(与前面的查询不带分词器的相比,会发现mappings里面多了很多数据信息)

{
    "books": {
        "aliases": {},
        "mappings": {   //mappings属性已经被替换
            "properties": {
                "all": {
                    "type": "text",
                    "analyzer": "ik_max_word"
                },
                "description": {
                    "type": "text",
                    "copy_to": [
                        "all"
                    ],
                    "analyzer": "ik_max_word"
                },
                "id": {
                    "type": "keyword"
                },
                "name": {
                    "type": "text",
                    "copy_to": [
                        "all"
                    ],
                    "analyzer": "ik_max_word"
                },
                "type": {
                    "type": "keyword"
                }
            }
        },
        "settings": {
            "index": {
                "routing": {
                    "allocation": {
                        "include": {
                            "_tier_preference": "data_content"
                        }
                    }
                },
                "number_of_shards": "1",
                "provided_name": "books",
                "creation_date": "1704103876876",
                "number_of_replicas": "1",
                "uuid": "nQ2Jmml6QSOGwOI2cswwJw",
                "version": {
                    "created": "7160299"
                }
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

ES的基础操作-----文档操作

  1. 前面我们已经创建了索引了,但是索引中还没有数据,所以要先添加数据,ES中称数据为文档,下面进行文档操作。
添加文档:
  1. 添加文档有三种方式:创建books索引下的文档
POST请求	http://localhost:9200/books/_doc		#使用系统生成id(自动帮你创建)
POST请求	http://localhost:9200/books/_doc/1		  #使用指定id,不存在创建,存在更新(版本递增)

POST请求	http://localhost:9200/books/_create/1	   #使用指定id(必须指定id)
  • 1
  • 2
  • 3
  • 4

传参数据一般不使用id属性:因为指定了也不会生效,要么默认帮你创建,要么在请求路径上进行指定
参数的使用:

{
    "id": 1,  //一般不使用这一行
    "name": "springboot1",
    "type": "book",
    "desctiption": "an book"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

第一种请求方式:
在这里插入图片描述
返回结果:

{
    "_index": "books",
    "_type": "_doc",
    "_id": "MgeZxIwB35gR6M6IUssu",
    "_version": 1,
    "result": "created",
    "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 1,
    "_primary_term": 1
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

第二种请求方式:

在这里插入图片描述
返回结果:

{
    "_index": "books",
    "_type": "_doc",
    "_id": "55",
    "_version": 1,
    "result": "created",
    "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 2,
    "_primary_term": 1
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

第三种请求方式:

在这里插入图片描述

返回结果:

{
    "_index": "books",
    "_type": "_doc",
    "_id": "1",
    "_version": 1,
    "result": "created",
    "_shards": {
        "total": 2,
        "successful": 1,
        "failed": 0
    },
    "_seq_no": 0,
    "_primary_term": 1
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
获取文档
  1. 根据id获取某个索引的文档:http://localhost:9200/books/_doc/1
    在这里插入图片描述
  2. 获取某个索引的所有的文档:GET请求 http://localhost:9200/books/_search

在这里插入图片描述
3. 根据指定条件获取某个索引的所有的文档:

GET请求	http://localhost:9200/books/_search?q=name:springboot	
# q=查询属性名:查询属性值
  • 1
  • 2

在这里插入图片描述

删除文档
  1. 根据id进行删除:DELETE请求 http://localhost:9200/books/_doc/1
    在这里插入图片描述
修改文档(分为全量更新和部分更新)
全量更新(注意这里是put请求,以及_doc)
  1. PUT请求 http://localhost:9200/books/_doc/1:根据指定id进行修改,传入的数据就是修改后的数据。

//文档通过请求参数传递,数据格式json
{
    "name":"springboot",
    "type":"springboot",
    "description":"springboot"
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

在这里插入图片描述

修改文档(部分更新)注意:这里是post请求,以及_update
  1. POST请求 http://localhost:9200/books/_update/1


//文档通过请求参数传递,数据格式json
{			
    "doc":{	//部分更新并不是对原始文档进行更新,而是对原始文档对象中的doc属性中的指定属性更新
        "name":"springboot"		//仅更新提供的属性值,未提供的属性值不参与更新操作
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

在这里插入图片描述

三、Springboot整合ES

  1. 整合步骤(依旧是拿三板斧):

      1. 导入依赖
      1. 做配置(springboot底层有默认的配置)
      1. 调用它的api接口
  2. ES有两种级别的客户端,一种是Low Level Client,一种是High Level Client。

    • Low Level Client:这种客户端操作方式性能方面略显不足,不推荐使用,但是springboot最初整合ES的时候使用的是低级别客户端,所以企业开发需要更换成高级别的客户端模式
    • High Level Clien:高级别客户端与ES版本同步更新

Springboot整合Low Level Client的ES(不推荐使用了,这里了解一下)

  1. ES早期的操作方式如下:
    步骤①:导入springboot整合ES的starter坐标(spiringboot里面有指定版本(就是低级别的版本号)
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
  • 1
  • 2
  • 3
  • 4

步骤②:进行基础配置

spring:
  elasticsearch:
    rest:
      uris: http://localhost:9200
  • 1
  • 2
  • 3
  • 4

配置ES服务器地址,端口9200(默认就是9200)

步骤③:使用springboot整合ES的专用客户端接口ElasticsearchRestTemplate来进行操作

@SpringBootTest
class Springboot18EsApplicationTests {
    @Autowired
    private ElasticsearchRestTemplate template;
}
  • 1
  • 2
  • 3
  • 4
  • 5

springboot测试类中的测试类的初始化方法和销毁方法的使用

  1. @BeforeEach:在测试类中每个操作运行运行的方法
  2. @AfterEach :在测试类中每个操作运行运行的方法
@SpringBootTest
class Springbootests {
    @BeforeEach		//在测试类中每个操作运行前运行的方法
    void setUp() {
       //各种操作
    }

    @AfterEach		//在测试类中每个操作运行后运行的方法
    void tearDown() {
        //各种操作
    }

}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

Springboot整合High Level Client的ES

  1. 高级别客户端方式进行springboot整合ES,操作步骤如下:
    步骤①:导入springboot整合ES高级别客户端的坐标,此种形式目前没有对应的starter
<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>
  • 1
  • 2
  • 3
  • 4

这里的springboot版本为:2.5.4,es的版本为7.16.2,那时候的springboot没有整合高级别的ES,所以配置文件里不需要配置,只能写硬编码配置
步骤②:使用编程的形式设置连接的ES服务器,并获取客户端对象

步骤③:使用客户端对象操作ES,例如创建索引为索引添加文档等等操作。

ES-----创建客户端

@SpringBootTest
class Springboot18EsApplicationTests {

	 @Autowired
    private BookMapper bookMapper;
    
    private RestHighLevelClient client;
      @Test
      void testCreateClient() throws IOException {
      //先创建ES客户端
          HttpHost host = HttpHost.create("http://localhost:9200");
          RestClientBuilder builder = RestClient.builder(host);
          client = new RestHighLevelClient(builder);
  
          client.close();
      }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

配置ES服务器地址与端口9200,记得客户端使用完毕需要手工关闭。由于当前客户端是手工维护的,因此不能通过自动装配的形式加载对象。

ES-----根据客户端创建索引

@SpringBootTest
class Springboot18EsApplicationTests {

	 @Autowired
    private BookMapper bookMapper;
    
    private RestHighLevelClient client;
      @Test
      void testCreateIndex() throws IOException {
      //先创建ES客户端
          HttpHost host = HttpHost.create("http://localhost:9200");
          RestClientBuilder builder = RestClient.builder(host);
          client = new RestHighLevelClient(builder);
          
      //在通过ES客户端创建索引
          CreateIndexRequest request = new CreateIndexRequest("books");
          client.indices().create(request, RequestOptions.DEFAULT); 
          
          client.close();
      }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

高级别客户端操作是通过发送请求的方式完成所有操作的,ES针对各种不同的操作,设定了各式各样的请求对象,上例中创建索引的对象是CreateIndexRequest,其他操作也会有自己专用的Request对象。

ES-----根据客户端创建索引(使用Ik分词器)

使用分词器IK:

//json的参数:
{
    "mappings":{
        "properties":{
            "id":{
                "type":"keyword"
            },
            "name":{
                "type":"text",
                "analyzer":"ik_max_word",
                "copy_to":"all"
            },
            "type":{
                "type":"keyword"
            },
            "description":{
                "type":"text",
                "analyzer":"ik_max_word",
                "copy_to":"all"
            },
            "all":{
                "type":"text",
                "analyzer":"ik_max_word"
            }
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
 @Test
    void testCreateClientIndexByIk() throws IOException {
//            创建客户端
        HttpHost host = HttpHost.create("http://localhost:9200");
        RestClientBuilder builder = RestClient.builder(host);
        client = new RestHighLevelClient(builder);


        CreateIndexRequest request = new CreateIndexRequest("books");
        String json = "{\n" +
                "    \"mappings\":{\n" +
                "        \"properties\":{\n" +
                "            \"id\":{\n" +
                "                \"type\":\"keyword\"\n" +
                "            },\n" +
                "            \"name\":{\n" +
                "                \"type\":\"text\",\n" +
                "                \"analyzer\":\"ik_max_word\",\n" +
                "                \"copy_to\":\"all\"\n" +
                "            },\n" +
                "            \"type\":{\n" +
                "                \"type\":\"keyword\"\n" +
                "            },\n" +
                "            \"description\":{\n" +
                "                \"type\":\"text\",\n" +
                "                \"analyzer\":\"ik_max_word\",\n" +
                "                \"copy_to\":\"all\"\n" +
                "            },\n" +
                "            \"all\":{\n" +
                "                \"type\":\"text\",\n" +
                "                \"analyzer\":\"ik_max_word\"\n" +
                "            }\n" +
                "        }\n" +
                "    }\n" +
                "}";
        //设置请求中的参数(添加分词器)
        request.source(json, XContentType.JSON);
        client.indices().create(request, RequestOptions.DEFAULT);
        client.close();
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40

IK分词器是通过请求参数的形式进行设置的,设置请求参数使用request对象中的source方法进行设置,至于参数是什么,取决于你的操作种类。当请求中需要参数时,均可使用当前形式进行参数设置。

ES-----为索引添加文档

//    添加文档:
    @Test
    void testCreateClientIndexByIkAddData() throws IOException {
//            创建客户端
        HttpHost host = HttpHost.create("http://localhost:9200");
        RestClientBuilder builder = RestClient.builder(host);
        client = new RestHighLevelClient(builder);
        
//        进行添加操作,因为前面已经创建好了books索引

        Book book = bookMapper.selectById(1);
//        把book对象数据转换为json数据,
        String json = JSON.toJSONString(book);
//        指定添加的文档的id为book.getId(),需要添加文档的索引为books
        IndexRequest request = new IndexRequest("books").id(book.getId().toString());
//        传入数据
        request.source(json,XContentType.JSON);
        client.index(request,RequestOptions.DEFAULT);
        client.close();
    }

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21

添加文档使用的请求对象是IndexRequest,与创建索引使用的请求对象不同。

ES-----为索引批量添加文档

//    批量添加
    @Test
    void testCreateClientIndexByIkAddBatchData() throws IOException {
//            创建客户端
        HttpHost host = HttpHost.create("http://localhost:9200");
        RestClientBuilder builder = RestClient.builder(host);
        client = new RestHighLevelClient(builder);

//        进行添加操作,因为前面已经创建好了books索引

        List<Book> bookList= bookMapper.selectList(null);
//       BulkRequest的对象,可以将该对象理解为是一个保存request对象的容器,
//       将所有的请求都初始化好后,添加到BulkRequest对象中,再使用BulkRequest对象的bulk方法,一次性执行完毕
        BulkRequest bulk = new BulkRequest();

        for (Book book : bookList) {
            //        把book对象数据转换为json数据,
            String json = JSON.toJSONString(book);
//        指定添加的文档的id为book.getId(),需要添加文档的索引为books
            IndexRequest request = new IndexRequest("books").id(book.getId().toString());
//        传入数据
            request.source(json,XContentType.JSON);
//            把数据放进BulkRequest对象里面
            bulk.add(request);
        }
//        批量执行
        client.bulk(bulk,RequestOptions.DEFAULT);
//        关闭客户端
        client.close();
    }


  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

批量做时,先创建一个BulkRequest的对象,可以将该对象理解为是一个保存request对象的容器,将所有的请求都初始化好后,添加到BulkRequest对象中,再使用BulkRequest对象的bulk方法,一次性执行完毕。

ES-----查询文档

根据id查询
 @Test
        //按id查询
    void testGetById() throws IOException {
        //            创建客户端
        HttpHost host = HttpHost.create("http://localhost:9200");
        RestClientBuilder builder = RestClient.builder(host);
        client = new RestHighLevelClient(builder);

//        根据id查询
        GetRequest request = new GetRequest("books","1");
        GetResponse response = client.get(request, RequestOptions.DEFAULT);
//        获取查询到的数据中的source属性的数据
        String json = response.getSourceAsString();
        System.out.println(json);
        client.close();
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
条件查询
 @Test
        //按条件查询
    void testSearch() throws IOException {
        //            创建客户端
        HttpHost host = HttpHost.create("http://localhost:9200");
        RestClientBuilder builder = RestClient.builder(host);
        client = new RestHighLevelClient(builder);

//
        SearchRequest request = new SearchRequest("books");
        //创建条件查询对象
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//        设置查询条件
        searchSourceBuilder.query(QueryBuilders.termQuery("all", "spring"));
//       把查询条件放进请求中
        request.source(searchSourceBuilder);

//        根据请求获取返回数据
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
//        获取返回数据里面的hits属性(获取的具体属性,可以看上面的postman操作)
        SearchHits hits = response.getHits();
        for (SearchHit hit : hits) {
            String source = hit.getSourceAsString();
            //把json数据转换为对象
            Book book = JSON.parseObject(source, Book.class);
            System.out.println(book);
        }
    }
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

Mysql与Es数据同步的实现(这里只是基本了解一下)

  1. 在实际项目开发中,我们经常将mysql作为业务数据库,ES作为擦汗寻数据库,用来实现读写分离,缓解mysql数据库的查询压力,应对海量数据的复杂查询。

1、同步双写

  1. 这是一种最为简单的方式,在将数据写入mysql的同时,也把数据写到ES里面
  2. 优缺点:
    • 优点
        1. 业务逻辑简单
      • 2、 实时性高
    • 缺点:
        1. 硬编码,有需要写入MySQL的地方,都需要添加写入es的代码
        1. 业务强耦合
        1. 存在双写失败丢失数据的风险
        1. 性能较差,本来的mysql的性能不是很高,再加一个es系统的性能必然会下降

2. 异步双写

  1. 针对多数据源写入的场景,可以借助MQ实现异步的多源写入
  2. 优缺点
    • 优点:
        1. 性能高
        1. 不易出现数据丢失问题:主要基于MQ消息的消费保障机制,比如ES宕机或者写入失败,还能重新消费MQ消息;
        1. 多源写入之间相互隔离,便于扩展更多的数据源写入
    • 缺点:
        1. 硬编码问题:接入新的数据源需要实现新的消费者代码
      • 2、系统复杂度增加,映入了消息中间件
      • 3、数据实时问题,mq是异步消费,用户输入,不一定会马上同步让他看到

3、基于sql抽取(定时任务)

  1. 上面两种方案都存在硬编码问题,代码的侵入性太强,如果对实时性要求不高的情况下,可以考虑用定时器来处理:
      1. 数据库的相关表中增加一个字段为updatetime(自己定义的名称)字段,任何CURD操作都会导致该字段的实际发生变化
      1. 原来程序中的crud操作不做任何变化
      1. 增加一个定时器程序,让该程序按一定的时间周期扫描指定的表,把该时间段内发生的变化的数据提取出来
      1. 比较此字段来确认变更数据,然后把变更的数据逐条写入ES中。
  2. 优缺点:
    • 优点:
      • 1、不改原代码,没有侵入性,没有硬编码;
      • 2、没有业务强耦合,不改变原来程序的性能;
      • 3、worker代码编写简单,不需要考虑增删改查;
    • 缺点:
      • 1、时效性太差,由于采取定时器根据固定频率查询表来同步数据,尽管将同步周期设置到秒级,也还是会存在一定时间的延迟。
      • 2、对数据库有一定的轮询压力。
    • 优化的方案:
    • 1、将轮寻放到压力不大的从库上
    • 2、借助logstash实现数据同步,其底层实现原理就是根据配置定期使用sql查询新增的数据写入es中,实现数据的增量同步(经典方案)

4、基于Binlog实现同步

  1. 前三种代码要么有代码侵入,要么有延迟。

  2. 而基于Binlog与mysql实现同步:既能保证数据同步的实时性又没有代入、侵入性。

  3. 实施步骤

    • 1、读取mysql 的binlog日志,获取指定表的日志信息;
    • 2、将读取的信息转为mq;
    • 3、编写一个mq消费程序;
    • 4、不断消费mq,每费完一条消息,将消息写入到es中;
  4. 优缺点:

    • 优点:
      • 1、没有代码侵入,没有硬编码;
      • 原有系统不需要任何变化,没有感知;
      • 3、性能高
      • 4、业务解耦,不需要关注原来系统的业务逻辑
    • 缺点:
      • 1、构建Binlog系统复杂
      • 2、如皋采用MQ消费解析的Binlog信息,也会存在MQ延时的风险

数据迁移工具选型

  1. 对于上面的四种数据同步方案,“基于Binlog实时同步”方案是目前最为常用的,也诞生了很多优秀的数据迁移工具,主要有以下几种:
    • 1、canal (原理是伪装成mysql的从数据库)
    • 2、阿里云DTS (需付费)
    • 3、databus
    • 4、Flink
    • 5、CloudCanal
    • 6、Maxwell
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/一键难忘520/article/detail/931006
推荐阅读
相关标签
  

闽ICP备14008679号