赞
踩
Elasticsearch的Index Lifecycle Management(ILM)
3. 分区索引
将数据分区存储在多个小索引中,而不是一个大索引中。可以基于时间(如每天一个索引)、数据类别或任何其他逻辑来分区。这样做的好处是:
提高管理灵活性。
可以单独优化和管理每个小索引。
改善查询性能,因为查询可以并行处理多个小索引。
4. 使用Document Routing
当写入或查询数据时,可以使用自定义路由键来确保具有相同路由键的文档位于相同的分片上。这可以显著提高特定查询的性能,因为ES只需要查询包含相关文档的分片。
Elasticsearch中Document Routing特性
5. 优化映射和查询
映射(Mapping):精心设计你的索引映射。例如,对于不需要全文搜索的字段,使用keyword类型而不是text,并禁用不需要索引的字段。
查询:优化查询逻辑,避免使用高成本操作(如wildcard查询、大范围的range查询等)。使用合适的查询类型和结构可以显著提高性能。
6. 使用Force Merge减少段数量
对于只读索引,使用force merge操作可以减少索引中的段(segment)数量,从而提高查询性能。注意,force merge是一个资源密集型操作,应在低峰时段执行。
每种策略的具体实现可以查看对应文章:
Elasticsearch 中的索引的分区(Shards)和副本(Replicas)的使用和副本(Replicas)的使用")
Elasticsearch的Index Lifecycle Management(ILM)
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
T行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。