当前位置:   article > 正文

关联度分析法-灰色关联分析

关联度

灰色关联分析介绍

对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
通常可以运用此方法来分析各个因素对于结果的影响程度,也可以运用此方法解决随时间变化的综合评价类问题。

灰色关联分析的步骤

灰色系统关联分析的具体计算步骤如下:

  1. 确定反映系统行为特征的参考数列和影响系统行为的比较数列。
    反映系统行为特征的数据序列,称为参考数列(可以理解为因变量)。影响系统行为的因素组成的数据序列,称比较数列(可以理解为自变量)。
  2. 对参考数列和比较数列进行无量纲化处理。
    由于系统中各因素的物理意义不同,导致数据的量纲也不一定相同,不便于比较,或在比较时难以得到正确的结论。因此在进行灰色关联度分析时,一般都要进行无量纲化的数据处理。
  3. 求参考数列与比较数列的灰色关联系数ξ(Xi)
    所谓关联程度,实质上是曲线间几何形状的差别程度。因此曲线间差值大小,可作为关联程度的衡量尺度。对于一个参考数列X0有若干个比较数列X1, X2,…, Xn,各比较数列与参考数列在各个时刻(即曲线中的各点)的关联系数ξ(Xi)可由下列公式算出:

在这里插入图片描述
其中 ρ为分辨系数,ρ>0,ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。通常取0.5。
minmin是第二级最小差,记为Δmin。 maxmax是两级最大差,记为Δmax。
在这里插入图片描述
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值,记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:
在这里插入图片描述

  1. 求关联度ri
    因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:
    在这里插入图片描述

  2. 关联度排序
    因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj} ;若r0i表1 代表旗县参考数列、比较数列特征值。

实例

#灰色关联度分析
import pandas as p
import numpy as np
from numpy import *
import matplotlib.pyplot as plt
%matplotlib inline

# 从硬盘读取数据进入内存
wine = pd
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/270467
推荐阅读
相关标签
  

闽ICP备14008679号