赞
踩
https://blog.csdn.net/qq_42279468/article/details/124987801
https://www.bilibili.com/video/BV1bh4y1n7bw/
本项目通过python实现多模态情绪识别,使用keras框架搭建网络,包括语音、文字和图像三种处理后的数据。
算法使用LayerNormBasicLSTMCell+注意力机制构建网络
Training epoch 1 3it [00:03, 1.58s/it] Epoch 1:, loss 0.868626, accuracy 0.467928 4it [00:03, 1.03it/s] 0it [00:00, ?it/s]Training epoch 2 3it [00:01, 2.13it/s] Epoch 2:, loss 0.688236, accuracy 0.584177 4it [00:01, 2.33it/s] 0it [00:00, ?it/s]Training epoch 3 4it [00:01, 2.44it/s] Epoch 3:, loss 0.623478, accuracy 0.65178 0it [00:00, ?it/s]Training epoch 4 3it [00:01, 2.10it/s] Epoch 4:, loss 0.472371, accuracy 0.801504 4it [00:01, 2.40it/s] Training epoch 5 3it [00:01, 2.03it/s] Epoch 5:, loss 0.429814, accuracy 0.834892 4it [00:01, 2.43it/s] 0it [00:00, ?it/s]Training epoch 6 3it [00:01, 2.09it/s] Epoch 6:, loss 0.400317, accuracy 0.847018 4it [00:01, 2.44it/s] 0it [00:00, ?it/s]Training epoch 7 4it [00:01, 2.36it/s] Epoch 7:, loss 0.340432, accuracy 0.853922 0it [00:00, ?it/s] Training epoch 8 4it [00:01, 2.24it/s] Epoch 8:, loss 0.304842, accuracy 0.884431 0it [00:00, ?it/s] Training epoch 9 3it [00:01, 2.03it/s] Epoch 9:, loss 0.275721, accuracy 0.908767 4it [00:01, 2.44it/s] 0it [00:00, ?it/s]Training epoch 10 4it [00:01, 2.54it/s] Epoch 10:, loss 0.242068, accuracy 0.931539 0it [00:00, ?it/s]Training epoch 11 3it [00:01, 2.03it/s] Epoch 11:, loss 0.246808, accuracy 0.910064 4it [00:01, 2.36it/s] 0it [00:00, ?it/s] Training epoch 12 4it [00:01, 2.29it/s] Epoch 12:, loss 0.206893, accuracy 0.939517 0it [00:00, ?it/s]Training epoch 13 4it [00:01, 2.57it/s] Epoch 13:, loss 0.185851, accuracy 0.944807 0it [00:00, ?it/s] Training epoch 14 4it [00:01, 2.29it/s] Epoch 14:, loss 0.157054, accuracy 0.95869 0it [00:00, ?it/s]Training epoch 15 4it [00:01, 2.42it/s] Epoch 15:, loss 0.166478, accuracy 0.952298 0it [00:00, ?it/s] Training epoch 16 3it [00:01, 2.09it/s] Epoch 16:, loss 0.149369, accuracy 0.971128 4it [00:01, 2.35it/s] 0it [00:00, ?it/s]Training epoch 17 4it [00:01, 2.31it/s] Epoch 17:, loss 0.124102, accuracy 0.975202 0it [00:00, ?it/s] Training epoch 18 4it [00:01, 2.31it/s] Epoch 18:, loss 0.127283, accuracy 0.965784 0it [00:00, ?it/s]Training epoch 19 4it [00:01, 2.14it/s] Epoch 19:, loss 0.114086, accuracy 0.972137 0it [00:00, ?it/s]Training epoch 20 3it [00:01, 1.97it/s] Epoch 20:, loss 0.121704, accuracy 0.973938 4it [00:01, 2.22it/s] 0it [00:00, ?it/s]Training epoch 21 3it [00:01, 2.10it/s] Epoch 21:, loss 0.103751, accuracy 0.969179 4it [00:01, 2.31it/s] 0it [00:00, ?it/s] Training epoch 22 3it [00:01, 2.17it/s] Epoch 22:, loss 0.114447, accuracy 0.968958 4it [00:01, 2.31it/s] 0it [00:00, ?it/s]Training epoch 23 3it [00:01, 2.16it/s] Epoch 23:, loss 0.0959018, accuracy 0.978891 4it [00:01, 2.34it/s] 0it [00:00, ?it/s]Training epoch 24 4it [00:01, 2.59it/s] Epoch 24:, loss 0.0853932, accuracy 0.986028 0it [00:00, ?it/s]Training epoch 25 4it [00:01, 2.44it/s] Epoch 25:, loss 0.0839167, accuracy 0.987315 0it [00:00, ?it/s]Training epoch 26 4it [00:01, 2.42it/s] Epoch 26:, loss 0.0777089, accuracy 0.986904 Training epoch 27 3it [00:01, 1.93it/s] Epoch 27:, loss 0.074715, accuracy 0.987368 4it [00:01, 2.21it/s] 0it [00:00, ?it/s]Training epoch 28 3it [00:01, 2.09it/s] Epoch 28:, loss 0.0690631, accuracy 0.987052 4it [00:01, 2.41it/s] 0it [00:00, ?it/s]Training epoch 29 4it [00:01, 2.39it/s] Epoch 29:, loss 0.0754572, accuracy 0.986618 0it [00:00, ?it/s]Training epoch 30 4it [00:01, 2.40it/s] Epoch 30:, loss 0.0808934, accuracy 0.978521 0it [00:00, ?it/s]Training epoch 31 3it [00:01, 2.03it/s] Epoch 31:, loss 0.0768318, accuracy 0.977635 4it [00:01, 2.35it/s] 0it [00:00, ?it/s] Training epoch 32 3it [00:01, 2.10it/s] Epoch 32:, loss 0.0907751, accuracy 0.97986 4it [00:01, 2.31it/s] Training epoch 33 3it [00:01, 2.10it/s] Epoch 33:, loss 0.0650676, accuracy 0.984582 4it [00:01, 2.30it/s] 0it [00:00, ?it/s]Training epoch 34 4it [00:01, 2.32it/s] Epoch 34:, loss 0.084893, accuracy 0.9796 Training epoch 35 3it [00:01, 2.26it/s] Epoch 35:, loss 0.0657072, accuracy 0.97979 4it [00:01, 2.30it/s] 0it [00:00, ?it/s]Training epoch 36 3it [00:01, 2.25it/s] Epoch 36:, loss 0.0571314, accuracy 0.989951 4it [00:01, 2.51it/s] 0it [00:00, ?it/s]Training epoch 37 4it [00:01, 2.17it/s] Epoch 37:, loss 0.0639608, accuracy 0.984723 0it [00:00, ?it/s] Training epoch 38 3it [00:01, 2.01it/s] Epoch 38:, loss 0.0603083, accuracy 0.987819 4it [00:01, 2.13it/s] 0it [00:00, ?it/s] Training epoch 39 3it [00:01, 2.08it/s] Epoch 39:, loss 0.0597859, accuracy 0.987659 4it [00:01, 2.35it/s] 0it [00:00, ?it/s] Training epoch 40 4it [00:01, 2.29it/s] Epoch 40:, loss 0.0657729, accuracy 0.987306 0it [00:00, ?it/s] Training epoch 41 3it [00:01, 1.99it/s] Epoch 41:, loss 0.0577475, accuracy 0.989388 4it [00:01, 2.38it/s] 0it [00:00, ?it/s]Training epoch 42 3it [00:01, 1.97it/s] Epoch 42:, loss 0.0561785, accuracy 0.985871 4it [00:01, 2.26it/s] 0it [00:00, ?it/s]Training epoch 43 4it [00:01, 2.48it/s] Epoch 43:, loss 0.0551007, accuracy 0.987269 0it [00:00, ?it/s]Training epoch 44 3it [00:01, 1.92it/s] Epoch 44:, loss 0.0516939, accuracy 0.986137 4it [00:01, 2.24it/s] Training epoch 45 4it [00:01, 2.34it/s] Epoch 45:, loss 0.0713419, accuracy 0.978741 0it [00:00, ?it/s] Training epoch 46 4it [00:01, 2.31it/s] Epoch 46:, loss 0.078447, accuracy 0.978097 0it [00:00, ?it/s] Training epoch 47 4it [00:01, 2.20it/s] Epoch 47:, loss 0.0496744, accuracy 0.987609 4it [00:01, 2.23it/s] 0it [00:00, ?it/s]Training epoch 48 4it [00:01, 2.41it/s] Epoch 48:, loss 0.054719, accuracy 0.98776 0it [00:00, ?it/s] Training epoch 49 4it [00:01, 2.30it/s] Epoch 49:, loss 0.0739138, accuracy 0.978141 0it [00:00, ?it/s]Training epoch 50 3it [00:01, 2.07it/s] Epoch 50:, loss 0.0537297, accuracy 0.987054 4it [00:01, 2.12it/s] 0it [00:00, ?it/s]Training epoch 51 4it [00:01, 2.29it/s] Epoch 51:, loss 0.0486002, accuracy 0.98399 0it [00:00, ?it/s]Training epoch 52 4it [00:01, 2.31it/s] Epoch 52:, loss 0.0549857, accuracy 0.986394 0it [00:00, ?it/s]Training epoch 53 4it [00:01, 2.21it/s] Epoch 53:, loss 0.0684459, accuracy 0.982455 0it [00:00, ?it/s]Training epoch 54 3it [00:01, 2.20it/s] Epoch 54:, loss 0.0616392, accuracy 0.981636 4it [00:01, 2.41it/s]
https://gitcode.net/qq_42279468/python-muti-fuse.git
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。