当前位置:   article > 正文

python实现keras多模态(语音文字图像)情绪识别【文末源码】_多模态情感识别开源代码 情感等级

多模态情感识别开源代码 情感等级

1、注:源码放置文末

1.1 环境配置要求:

https://blog.csdn.net/qq_42279468/article/details/124987801

2、展示效果:

https://www.bilibili.com/video/BV1bh4y1n7bw/
  • 1

3、代码

请添加图片描述

  本项目通过python实现多模态情绪识别,使用keras框架搭建网络,包括语音、文字和图像三种处理后的数据。
  算法使用LayerNormBasicLSTMCell+注意力机制构建网络
  • 1
  • 2

3.1 数据集展示

在这里插入图片描述

3.2 训练过程

Training epoch 1
3it [00:03,  1.58s/it]	 	Epoch 1:, loss 0.868626, accuracy 0.467928
4it [00:03,  1.03it/s]

0it [00:00, ?it/s]Training epoch 2
3it [00:01,  2.13it/s]	 	Epoch 2:, loss 0.688236, accuracy 0.584177
4it [00:01,  2.33it/s]

0it [00:00, ?it/s]Training epoch 3
4it [00:01,  2.44it/s]
	 	Epoch 3:, loss 0.623478, accuracy 0.65178

0it [00:00, ?it/s]Training epoch 4
3it [00:01,  2.10it/s]	 	Epoch 4:, loss 0.472371, accuracy 0.801504
4it [00:01,  2.40it/s]

Training epoch 5
3it [00:01,  2.03it/s]	 	Epoch 5:, loss 0.429814, accuracy 0.834892
4it [00:01,  2.43it/s]

0it [00:00, ?it/s]Training epoch 6
3it [00:01,  2.09it/s]	 	Epoch 6:, loss 0.400317, accuracy 0.847018
4it [00:01,  2.44it/s]

0it [00:00, ?it/s]Training epoch 7
4it [00:01,  2.36it/s]
	 	Epoch 7:, loss 0.340432, accuracy 0.853922
0it [00:00, ?it/s]
Training epoch 8
4it [00:01,  2.24it/s]
	 	Epoch 8:, loss 0.304842, accuracy 0.884431
0it [00:00, ?it/s]
Training epoch 9
3it [00:01,  2.03it/s]	 	Epoch 9:, loss 0.275721, accuracy 0.908767
4it [00:01,  2.44it/s]

0it [00:00, ?it/s]Training epoch 10
4it [00:01,  2.54it/s]
	 	Epoch 10:, loss 0.242068, accuracy 0.931539

0it [00:00, ?it/s]Training epoch 11
3it [00:01,  2.03it/s]	 	Epoch 11:, loss 0.246808, accuracy 0.910064
4it [00:01,  2.36it/s]
0it [00:00, ?it/s]
Training epoch 12
4it [00:01,  2.29it/s]
	 	Epoch 12:, loss 0.206893, accuracy 0.939517

0it [00:00, ?it/s]Training epoch 13
4it [00:01,  2.57it/s]
	 	Epoch 13:, loss 0.185851, accuracy 0.944807
0it [00:00, ?it/s]
Training epoch 14
4it [00:01,  2.29it/s]
	 	Epoch 14:, loss 0.157054, accuracy 0.95869

0it [00:00, ?it/s]Training epoch 15
4it [00:01,  2.42it/s]
	 	Epoch 15:, loss 0.166478, accuracy 0.952298
0it [00:00, ?it/s]
Training epoch 16
3it [00:01,  2.09it/s]	 	Epoch 16:, loss 0.149369, accuracy 0.971128
4it [00:01,  2.35it/s]

0it [00:00, ?it/s]Training epoch 17
4it [00:01,  2.31it/s]
	 	Epoch 17:, loss 0.124102, accuracy 0.975202
0it [00:00, ?it/s]
Training epoch 18
4it [00:01,  2.31it/s]
	 	Epoch 18:, loss 0.127283, accuracy 0.965784

0it [00:00, ?it/s]Training epoch 19
4it [00:01,  2.14it/s]
	 	Epoch 19:, loss 0.114086, accuracy 0.972137

0it [00:00, ?it/s]Training epoch 20
3it [00:01,  1.97it/s]	 	Epoch 20:, loss 0.121704, accuracy 0.973938
4it [00:01,  2.22it/s]

0it [00:00, ?it/s]Training epoch 21
3it [00:01,  2.10it/s]	 	Epoch 21:, loss 0.103751, accuracy 0.969179
4it [00:01,  2.31it/s]
0it [00:00, ?it/s]
Training epoch 22
3it [00:01,  2.17it/s]	 	Epoch 22:, loss 0.114447, accuracy 0.968958
4it [00:01,  2.31it/s]

0it [00:00, ?it/s]Training epoch 23
3it [00:01,  2.16it/s]	 	Epoch 23:, loss 0.0959018, accuracy 0.978891
4it [00:01,  2.34it/s]

0it [00:00, ?it/s]Training epoch 24
4it [00:01,  2.59it/s]
	 	Epoch 24:, loss 0.0853932, accuracy 0.986028

0it [00:00, ?it/s]Training epoch 25
4it [00:01,  2.44it/s]
	 	Epoch 25:, loss 0.0839167, accuracy 0.987315

0it [00:00, ?it/s]Training epoch 26
4it [00:01,  2.42it/s]
	 	Epoch 26:, loss 0.0777089, accuracy 0.986904

Training epoch 27
3it [00:01,  1.93it/s]	 	Epoch 27:, loss 0.074715, accuracy 0.987368
4it [00:01,  2.21it/s]

0it [00:00, ?it/s]Training epoch 28
3it [00:01,  2.09it/s]	 	Epoch 28:, loss 0.0690631, accuracy 0.987052
4it [00:01,  2.41it/s]

0it [00:00, ?it/s]Training epoch 29
4it [00:01,  2.39it/s]
	 	Epoch 29:, loss 0.0754572, accuracy 0.986618

0it [00:00, ?it/s]Training epoch 30
4it [00:01,  2.40it/s]
	 	Epoch 30:, loss 0.0808934, accuracy 0.978521

0it [00:00, ?it/s]Training epoch 31
3it [00:01,  2.03it/s]	 	Epoch 31:, loss 0.0768318, accuracy 0.977635
4it [00:01,  2.35it/s]
0it [00:00, ?it/s]
Training epoch 32
3it [00:01,  2.10it/s]	 	Epoch 32:, loss 0.0907751, accuracy 0.97986
4it [00:01,  2.31it/s]

Training epoch 33
3it [00:01,  2.10it/s]	 	Epoch 33:, loss 0.0650676, accuracy 0.984582
4it [00:01,  2.30it/s]

0it [00:00, ?it/s]Training epoch 34
4it [00:01,  2.32it/s]
	 	Epoch 34:, loss 0.084893, accuracy 0.9796

Training epoch 35
3it [00:01,  2.26it/s]	 	Epoch 35:, loss 0.0657072, accuracy 0.97979
4it [00:01,  2.30it/s]

0it [00:00, ?it/s]Training epoch 36
3it [00:01,  2.25it/s]	 	Epoch 36:, loss 0.0571314, accuracy 0.989951
4it [00:01,  2.51it/s]

0it [00:00, ?it/s]Training epoch 37
4it [00:01,  2.17it/s]
	 	Epoch 37:, loss 0.0639608, accuracy 0.984723
0it [00:00, ?it/s]
Training epoch 38
3it [00:01,  2.01it/s]	 	Epoch 38:, loss 0.0603083, accuracy 0.987819
4it [00:01,  2.13it/s]
0it [00:00, ?it/s]
Training epoch 39
3it [00:01,  2.08it/s]	 	Epoch 39:, loss 0.0597859, accuracy 0.987659
4it [00:01,  2.35it/s]
0it [00:00, ?it/s]
Training epoch 40
4it [00:01,  2.29it/s]
	 	Epoch 40:, loss 0.0657729, accuracy 0.987306
0it [00:00, ?it/s]
Training epoch 41
3it [00:01,  1.99it/s]	 	Epoch 41:, loss 0.0577475, accuracy 0.989388
4it [00:01,  2.38it/s]

0it [00:00, ?it/s]Training epoch 42
3it [00:01,  1.97it/s]	 	Epoch 42:, loss 0.0561785, accuracy 0.985871
4it [00:01,  2.26it/s]

0it [00:00, ?it/s]Training epoch 43
4it [00:01,  2.48it/s]
	 	Epoch 43:, loss 0.0551007, accuracy 0.987269

0it [00:00, ?it/s]Training epoch 44
3it [00:01,  1.92it/s]	 	Epoch 44:, loss 0.0516939, accuracy 0.986137
4it [00:01,  2.24it/s]

Training epoch 45
4it [00:01,  2.34it/s]
	 	Epoch 45:, loss 0.0713419, accuracy 0.978741
0it [00:00, ?it/s]
Training epoch 46
4it [00:01,  2.31it/s]
	 	Epoch 46:, loss 0.078447, accuracy 0.978097
0it [00:00, ?it/s]
Training epoch 47
4it [00:01,  2.20it/s]	 	Epoch 47:, loss 0.0496744, accuracy 0.987609
4it [00:01,  2.23it/s]

0it [00:00, ?it/s]Training epoch 48
4it [00:01,  2.41it/s]
	 	Epoch 48:, loss 0.054719, accuracy 0.98776
0it [00:00, ?it/s]
Training epoch 49
4it [00:01,  2.30it/s]
	 	Epoch 49:, loss 0.0739138, accuracy 0.978141

0it [00:00, ?it/s]Training epoch 50
3it [00:01,  2.07it/s]	 	Epoch 50:, loss 0.0537297, accuracy 0.987054
4it [00:01,  2.12it/s]

0it [00:00, ?it/s]Training epoch 51
4it [00:01,  2.29it/s]
	 	Epoch 51:, loss 0.0486002, accuracy 0.98399

0it [00:00, ?it/s]Training epoch 52
4it [00:01,  2.31it/s]
	 	Epoch 52:, loss 0.0549857, accuracy 0.986394

0it [00:00, ?it/s]Training epoch 53
4it [00:01,  2.21it/s]
	 	Epoch 53:, loss 0.0684459, accuracy 0.982455

0it [00:00, ?it/s]Training epoch 54
3it [00:01,  2.20it/s]	 	Epoch 54:, loss 0.0616392, accuracy 0.981636
4it [00:01,  2.41it/s]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215

3.3 模型评估

请添加图片描述
请添加图片描述

4 源码下载

https://gitcode.net/qq_42279468/python-muti-fuse.git
  • 1
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/349596
推荐阅读
相关标签
  

闽ICP备14008679号