赞
踩
PCM(Pulse Code Modulation),脉冲编码调制。人耳听到的是模拟信号,PCM是把声音从模拟信号转化为数字信号的技术。原理是用一个固定的频率对模拟信号进行采样,采样后的信号在波形上看就像一串连续的幅值不一的脉冲(脉搏似的短暂起伏的电冲击),把这些脉冲的幅值按一定精度进行量化,这些量化后的数值被连续的输出、传输、处理或记录到存储介质中,所有这些组成了数字音频的产生过程(抽样、量化、编码三个过程)。
PCM数据常用量化指标
采样率(Sample rate):每秒钟采样多少次,以Hz为单位。
位深度(Bit-depth):表示用多少个二进制位来描述采样数据,一般为16bit。详见:**Quantization(量化)**一节。
字节序:表示音频PCM数据存储的字节序是大端存储(big-endian)还是小端存储(little-endian),为了数据处理效率的高效,通常为小端存储。
声道数(channel number):当前PCM文件中包含的声道数,是单声道(mono)、双声道(stereo)
采样数据是否有符号(Sign):要表达的就是字面上的意思,需要注意的是,使用有符号的采样数据不能用无符号的方式播放。
以FFmpeg中常见的PCM数据格式s16le为例:它描述的是有符号16位小端PCM数据。
s表示有符号,16表示位深,le表示小端存储。
大小端存储简介说明:
大端模式,是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致。
小端模式,是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低。
下面以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为 8bit。但是在C语言中除了8bit的char之外,还有16bit的short型,32bit的long型(要看具体的编译器),另外,对于位数大于 8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题,因此就导致了大端存储模式和小端存储模式。
例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。小端模式,刚好相反。
我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以随时在程序中(在ARM Cortex 系列使用REV、REV16、REVSH指令)进行大小端的切换
cpu大小端现状: 目前Intel的80x86系列芯片是唯一还在坚持使用小端的芯片,ARM芯片默认采用小端,但可以切换为大端;而MIPS等芯片要么采用全部大端的方式储存,要么提供选项支持大端——可以在大小端之间切换。另外,对于大小端的处理也和编译器的实现有关,在C语言中,默认是小端(但在一些对于单片机的实现中却是基于大端,比如Keil 51C),Java是平台无关的,默认是大端。在网络上传输数据普遍采用的都是大端。
PCM 音频数据的存储
如果是单声道的音频文件,采样数据按时间的先后顺序依次存入(有的时候也会采用 LRLRLR 方式存储,只是另一个声道的数据为 0),如果是双声道的话通常按照 LRLRLR 的方式存储,存储的时候还和机器的大小端有关。大端模式如下图所示:
PCM数据处理实践
接下来给大家演示下对原生PCM数据的几种处理,具体参考雷神的博客代码,详情:PCM数据处理
以一个16位双声道小端模式的pcm数据为例,进行处理左右声道分离,对某个声道声音降低,对播放速度进行提高。这里使用C语音简单处理,在安卓中有强大的opensl es库进行处理。大家有兴趣可以去研究下。
常见的格式有flac ape wav mp3 aac ogg wma,其中压缩比为:aac>ogg>mp3(wma)>ape>flac>wav 同音质) mp3和wma以192kbps为 分界线,192kbps以上mp3好,以下wma好。 最高音质:wav=flac=ape>aac>ogg>mp3>wma 其中 wma(有无损,但是少见) wav少见 手机 mp3>wma>aac wav>flac ogg>ape 性能(就是综合音质体积编码率):aac>ogg>flac ape>mp3>wav>wma 。由于目前使用最广泛的是aac。接下来主要针对这种做主要介绍。
AAC是高级音频编码(Advanced Audio Coding) 的缩写,出现于1997年,最初是基于MPEG-2的音频编码技术。由Fraunhofer IIS、Dolby Laboratories、AT&T、Sony等公司共同开发,目的是取代MP3格式。2000年,MPEG-4标准出台,AAC重新集成了其它 技术(PS,SBR),为区别于传统的MPEG-2 AAC,故含有SBR或PS特性的AAC又称为MPEG-4 AAC。
AAC是新一代的音频有损压缩技术,它通过一些附加的编码技术(比如PS,SBR等),衍生出了LC-AAC,HE-AAC,HE-AACv2三 种主要的编码,LC-AAC就是比较传统的AAC,相对而言,主要用于中高码率(>=80Kbps),HE-AAC(相当于AAC+SBR)主要用 于中低码(<=80Kbps),而新近推出的HE-AACv2(相当于AAC+SBR+PS)主要用于低码率(<=48Kbps),事实上大 部分编码器设成<=48Kbps自动启用PS技术,而>48Kbps就不加PS,就相当于普通的HE-AAC。
目前使用最多的是LC和HE(适合低码率)。流行的Nero AAC编码程序只支持LC,HE,HEv2这三种规格,编码后的AAC音频,规格显示都是LC。HE其实就是AAC(LC)+SBR技术,HEv2就是AAC(LC)+SBR+PS技术;
HE:“High Efficiency”(高效性)。HE-AAC v1(又称AACPlusV1,SBR),用容器的方法实现了AAC(LC)+SBR技术。SBR其实代表的是Spectral Band Replication(频段复制)。简要叙述一下,音乐的主要频谱集中在低频段,高频段幅度很小,但很重要,决定了音质。如果对整个频段编码,若是为了保护高频就会造成低频段编码过细以致文件巨大;若是保存了低频的主要成分而失去高频成分就会丧失音质。SBR把频谱切割开来,低频单独编码保存主要成分,高频单独放大编码保存音质,“统筹兼顾”了,在减少文件大小的情况下还保存了音质,完美的化解这一矛盾。
HEv2:用容器的方法包含了HE-AAC v1和PS技术。PS指“parametric stereo”(参数立体声)。原来的立体声文件文件大小是一个声道的两倍。但是两个声道的声音存在某种相似性,根据香农信息熵编码定理,相关性应该被去掉才能减小文件大小。所以PS技术存储了一个声道的全部信息,然后,花很少的字节用参数描述另一个声道和它不同的地方。
AAC的音频文件格式有ADIF & ADTS:
ADIF:Audio Data Interchange Format 音频数据交换格式。这种格式的特征是可以确定的找到这个音频数据的开始,不需进行在音频数据流中间开始的解码,即它的解码必须在明确定义的开始处进行。故这种格式常用在磁盘文件中。
ADTS:Audio Data Transport Stream 音频数据传输流。这种格式的特征是它是一个有同步字的比特流,解码可以在这个流中任何位置开始。它的特征类似于mp3数据流格式。
简单说,ADTS可以在任意帧解码,也就是说它每一帧都有头信息。ADIF只有一个统一的头,所以必须得到所有的数据后解码。且这两种的header的格式也是不同的,目前一般编码后的和抽取出的都是ADTS格式的音频流。
ADTS格式结构
ADTS 头中相对有用的信息 采样率、声道数、帧长度。想想也是,我要是解码器的话,你给我一堆得AAC音频ES流我也解不出来。每一个带ADTS头信息的AAC流会清晰的告送解码器他需要的这些信息。
一般情况下ADTS的头信息都是7个字节,分为2部分:
adts_fixed_header();
adts_variable_header();
syncword :同步头 总是0xFFF, all bits must be 1,代表着一个ADTS帧的开始
ID:MPEG Version: 0 for MPEG-4, 1 for MPEG-2
Layer:always: ‘00’
profile:表示使用哪个级别的AAC,有些芯片只支持AAC LC 。在MPEG-2 AAC中定义了3种
sampling_frequency_index:表示使用的采样率下标,通过这个下标在 Sampling Frequencies[ ]数组中查找得知采样率的值。
0: 96000 Hz
1: 88200 Hz
2: 64000 Hz
3: 48000 Hz
4: 44100 Hz
5: 32000 Hz
6: 24000 Hz
7: 22050 Hz
8: 16000 Hz
9: 12000 Hz
10: 11025 Hz
11: 8000 Hz
12: 7350 Hz
13: Reserved
14: Reserved
15: frequency is written explictly
channel_configuration: 表示声道数
0: Defined in AOT Specifc Config
1: 1 channel: front-center
2: 2 channels: front-left, front-right
3: 3 channels: front-center, front-left, front-right
4: 4 channels: front-center, front-left, front-right, back-center
5: 5 channels: front-center, front-left, front-right, back-left, back-right
6: 6 channels: front-center, front-left, front-right, back-left, back-right, LFE-channel
7: 8 channels: front-center, front-left, front-right, side-left, side-right, back-left, back-right, LFE-channel
8-15: Reserved
frame_length : 一个ADTS帧的长度包括ADTS头和AAC原始流.
adts_buffer_fullness:0x7FF 说明是码率可变的码流
ADIF结构信息
ADIF头信息位于AAC文件的起始处,接下来就是连续的 raw data blocks。
详情请看雷神的博客:ACC数据解析
这一章主要介绍了音频原始数据和压缩数据结构类型,至于如何把原生数据编码成压缩数据,或者压缩数据解码成原生数据,可以使用开源ffmpeg框架进行编解码,在这也可以给大家看一下大致流程。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。