当前位置:   article > 正文

【数据结构】数据结构和算法学习大纲_数据结构与算法大纲

数据结构与算法大纲

数据结构的存储方式

数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)。
这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?

我们分析问题,一定要有递归的思想,自顶向下,从抽象到具体。你上来就列出这么多,那些都属于「上层建筑」,而数组和链表才是「结构基础」。因为那些多样化的数据结构,究其源头,都是在链表或者数组上的特殊操作,API 不同而已。

比如说「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。

两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。

散列表

就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。

用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题。

了解 Redis 数据库的朋友可能也知道,Redis 提供列表、字符串、集合等等几种常用数据结构,但是对于每种数据结构,底层的存储方式都至少有两种,以便于根据存储数据的实际情况使用合适的存储方式。

数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表,二者的优缺点如下:

数组

由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。

链表

因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。

数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。

区分迭代和递归:
相同点:
递归和迭代都是循环的一种。

不同点:

1、程序结构不同

递归是重复调用函数自身实现循环。迭代是函数内某段代码实现循环。 其中,迭代与普通循环的区别是:迭代时,循环代码中参与运算的变量同时是保存结果的变量,当前保存的结果作为下一次循环计算的初始值。

2、算法结束方式不同

递归循环中,遇到满足终止条件的情况时逐层返回来结束。迭代则使用计数器结束循环。 当然很多情况都是多种循环混合采用,这要根据具体需求。

3、效率不同

在循环的次数较大的时候,迭代的效率明显高于递归

从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。**线性就是 for/while 迭代为代表,非线性就是递归为代表。**再具体一步,无非以下几种框架:
数组遍历框架,典型的线性迭代结构:

void traverse(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        // 迭代访问 arr[i]
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5

链表遍历框架,兼具迭代和递归结构:

class ListNode{
	int val;
	ListNode next;
}

void traverse(ListNode head){
	for(ListNode p = head; p != null; p = p.next){
	//迭代访问 p.val
	}
}

void traverse(ListNode head){
	traverse(head.next)
	//递归访问
}

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

二叉树遍历框架,典型的非线性递归遍历结构:
.

class TreeNode{
	int val;
	TreeNode left,right;
}

void traverse(TreeNode root){
	traverse(root.left)
	traverse(root.right)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

二叉树框架可以扩展为 N 叉树的遍历框架:

class TreeNode{
	int val;
	TreeNode[] children;
}

void traverse(TreeNode root){
	for(TreeNode child : root.children)
	//基于范围的for循环
	//for里的第一部分用来做范围迭代的变量,就像被声明在for循环的变量一样,作用域仅限于循环的范围
	//:后的第二部分,表示将被迭代的范围
		traverse(child)
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12

对于算法无从下手的朋友来说,可以先刷树的相关题目,试着从框架上看问题,而不要纠结于细节问题。

纠结细节问题,就比如纠结 i 到底应该加到 n 还是加到 n - 1,这个数组的大小到底应该开 n 还是 n + 1 ?

从框架上看问题,就是像我们这样基于框架进行抽取和扩展,既可以在看别人解法时快速理解核心逻辑,也有助于找到我们自己写解法时的思路方向。

当然,如果细节出错,你得不到正确的答案,但是只要有框架,你再错也错不到哪去,因为你的方向是对的。

但是,你要是心中没有框架,那么你根本无法解题,给了你答案,你也不会发现这就是个树的遍历问题。

这种思维是很重要的,动态规划详解 中总结的找状态转移方程的几步流程,有时候按照流程写出解法,说实话我自己都不知道为啥是对的,反正它就是对了。。。

这就是框架的力量,能够保证你在快睡着的时候,依然能写出正确的程序;就算你啥都不会,都能比别人高一个级别

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/518775
推荐阅读
相关标签
  

闽ICP备14008679号