当前位置:   article > 正文

常见的AI安全风险(数据投毒、后门攻击、对抗样本攻击、模型窃取攻击等)_什么叫投毒测试

什么叫投毒测试
文章目录
  • 数据投毒(Data Poisoning)
  • 后门攻击(Backdoor Attacks)
  • 对抗样本攻击(Adversarial Examples)
  • 模型窃取攻击(Model Extraction Attacks)
  • 参考资料

![在这里插入图片描述](https://img-
blog.csdnimg.cn/direct/fec9b82ab7a84896ba2697e341a38b41.png#pic_center)

数据投毒(Data Poisoning)

数据投毒是一种通过在 训练数据 中植入恶意样本或修改数据以欺骗机器学习模型的方法。这种攻击旨在使模型 在未来的预测或决策中
产生错误结果。攻击者可能会植入具有误导性标签或特征的数据,以扭曲模型的学习过程,导致模型偏离真实数据的表征。数据投毒攻击可能在模型训练过程中不被察觉,但其影响可能在模型部署和运行时显现出来。

后门攻击(Backdoor Attacks)

后门攻击是一种在模型 训练过程
中植入后门或隐藏功能的方式。这些后门可能是针对特定输入触发的,使得模型在遇到这些特定标记或输入时产生意外行为。后门攻击的目的是
在模型表现正常的情况下,对特定情况下的预测或决策进行操控,可能导致安全隐患或隐私泄露

【注】 后门攻击和数据投毒攻击的异同点:

  • 相同点:
    • 都是发生在模型的 训练阶段
  • 不同点:
    • 数据投毒 :主要目的是使模型的泛化性能变差, 也即在测试集上的效果变差, 模型不能进行有效的学习, 甚至无法收敛。
    • 后门攻击 :目的则是使模型学习到攻击者指定的内容, 其对 正常样本 仍旧具有良好的测试效果,但对于 中毒样本 则会输出攻击者预先设定的标签。

对抗样本攻击(Adversarial Examples)

对抗样本攻击是通过对输入数据进行微小但有针对性的修改,使得机器学习模型产生错误分类或错误预测的样本。这些微小的变化对人类观察几乎不可察觉,但足以使模型做出错误的推断。对抗样本攻击是针对模型的鲁棒性和稳定性,即使在面对微小扰动时也能保持准确性。

模型窃取攻击(Model Extraction Attacks)

模型窃取攻击是一种针对机器学习模型的攻击,旨在通过观察模型的输出并利用查询功能,从中 重建或复制
原始模型。攻击者可能使用额外的查询信息来近似或重建受攻击模型,从而破坏模型拥有者的 知识产权潜在商业优势

参考资料

  • 深度学习中的后门攻击综述,杜巍, 刘功申,2022信息安全学报

最后

从时代发展的角度看,网络安全的知识是学不完的,而且以后要学的会更多,同学们要摆正心态,既然选择入门网络安全,就不能仅仅只是入门程度而已,能力越强机会才越多。

因为入门学习阶段知识点比较杂,所以我讲得比较笼统,大家如果有不懂的地方可以找我咨询,我保证知无不言言无不尽,需要相关资料也可以找我要,我的网盘里一大堆资料都在吃灰呢。

干货主要有:

①1000+CTF历届题库(主流和经典的应该都有了)

②CTF技术文档(最全中文版)

③项目源码(四五十个有趣且经典的练手项目及源码)

④ CTF大赛、web安全、渗透测试方面的视频(适合小白学习)

⑤ 网络安全学习路线图(告别不入流的学习)

⑥ CTF/渗透测试工具镜像文件大全

⑦ 2023密码学/隐身术/PWN技术手册大全

如果你对网络安全入门感兴趣,那么你需要的话可以点击这里

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/697143
推荐阅读
相关标签