当前位置:   article > 正文

多个二分类模型效果混淆矩阵展示_二分类数据集怎么用混淆矩阵代码

二分类数据集怎么用混淆矩阵代码
  1. data_for_model_ok = data[data.tag==0]
  2. data_for_model_ng = data[data.tag==1]
  3. data_for_model_ng_train = data_for_model_ng[:40]
  4. data_for_model_ng_test = data_for_model_ng[40:]
  5. data_for_model_ok_train = data_for_model_ok[:3000]
  6. data_for_model_ok_test = data_for_model_ok[3000:]
  7. data_train = pd.concat([data_for_model_ng_train,data_for_model_ok_train], axis=0)
  8. data_test = pd.concat([data_for_model_ng_test,data_for_model_ok_test], axis=0)
  9. data_train_x = data_train.drop(columns='tag').drop(columns='b')
  10. data_train_y = data_train['tag']
  11. data_test_x = data_test.drop(columns='tag').drop(columns='b')
  12. data_test_y = data_test['tag']
  13. MLbox = [AdaBoostClassifier,BaggingClassifier,ExtraTreesClassifier,GradientBoostingClassifier,
  14. RandomForestClassifier,HistGradientBoostingClassifier]
  15. for each in MLbox:
  16. MODEL = each()
  17. MODEL.fit(data_train_x,data_train_y)
  18. data_all['pre_tag'] = MODEL.predict(data_all[feature])
  19. print('_____________________')
  20. print(each)
  21. print(confusion_matrix(data_all['tag'],data_all['pre_tag']))
<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'>
[[5167   17]
 [  12   42]]
_____________________
<class 'sklearn.ensemble._bagging.BaggingClassifier'>
[[5169   15]
 [   5   49]]
_____________________
<class 'sklearn.ensemble._forest.ExtraTreesClassifier'>
[[5180    4]
 [   2   52]]
_____________________
<class 'sklearn.ensemble._gb.GradientBoostingClassifier'>
[[5171   13]
 [   3   51]]
_____________________
<class 'sklearn.ensemble._forest.RandomForestClassifier'>
[[5175    9]
 [   1   53]]
_____________________
<class 'sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier'>
[[5181    3]
 [  13   41]]

In [ ]:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/752711
推荐阅读
相关标签
  

闽ICP备14008679号