赞
踩
- data_for_model_ok = data[data.tag==0]
- data_for_model_ng = data[data.tag==1]
-
- data_for_model_ng_train = data_for_model_ng[:40]
- data_for_model_ng_test = data_for_model_ng[40:]
-
- data_for_model_ok_train = data_for_model_ok[:3000]
- data_for_model_ok_test = data_for_model_ok[3000:]
-
- data_train = pd.concat([data_for_model_ng_train,data_for_model_ok_train], axis=0)
- data_test = pd.concat([data_for_model_ng_test,data_for_model_ok_test], axis=0)
-
- data_train_x = data_train.drop(columns='tag').drop(columns='b')
- data_train_y = data_train['tag']
-
- data_test_x = data_test.drop(columns='tag').drop(columns='b')
- data_test_y = data_test['tag']
-
- MLbox = [AdaBoostClassifier,BaggingClassifier,ExtraTreesClassifier,GradientBoostingClassifier,
- RandomForestClassifier,HistGradientBoostingClassifier]
-
- for each in MLbox:
- MODEL = each()
- MODEL.fit(data_train_x,data_train_y)
- data_all['pre_tag'] = MODEL.predict(data_all[feature])
- print('_____________________')
- print(each)
- print(confusion_matrix(data_all['tag'],data_all['pre_tag']))

<class 'sklearn.ensemble._weight_boosting.AdaBoostClassifier'> [[5167 17] [ 12 42]] _____________________ <class 'sklearn.ensemble._bagging.BaggingClassifier'> [[5169 15] [ 5 49]] _____________________ <class 'sklearn.ensemble._forest.ExtraTreesClassifier'> [[5180 4] [ 2 52]] _____________________ <class 'sklearn.ensemble._gb.GradientBoostingClassifier'> [[5171 13] [ 3 51]] _____________________ <class 'sklearn.ensemble._forest.RandomForestClassifier'> [[5175 9] [ 1 53]] _____________________ <class 'sklearn.ensemble._hist_gradient_boosting.gradient_boosting.HistGradientBoostingClassifier'> [[5181 3] [ 13 41]]
In [ ]:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。