当前位置:   article > 正文

大数据毕业设计选题推荐-自媒体舆情分析平台-Hadoop-Spark-Hive_spark 舆情分析

spark 舆情分析

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

一、前言

随着互联网的普及和信息技术的快速发展,自媒体已成为人们表达观点、分享信息、交流意见的重要平台。然而,自媒体的自由性和开放性也带来了一系列的问题,如虚假信息的传播、网络暴力的发生、以及舆论的失控等。这些问题不仅严重影响了网络空间的健康秩序,也对社会现实产生了不可忽视的影响。因此,对自媒体舆情进行监控和分析,成为了一个亟待解决的问题。

目前,虽然有一些自媒体舆情监控平台,但是它们主要集中在舆情的简单监控和预警方面,缺乏对舆情数据的分析和挖掘。具体来说,这些平台往往只关注舆情的数量和热度,而忽视了舆情的内容和质量;只关注舆情的当前状态,而忽视了舆情的过去和未来趋势;只关注舆情的普遍性,而忽视了舆情的特殊性和个别性。因此,现有的自媒体舆情监控平台往往无法提供准确、深入的舆情分析和预警,也就无法满足社会对网络舆情管理的实际需求。

本研究旨在开发一个基于数据的自媒体舆情监控平台,通过收集和分析自媒体中的信息,实现对舆情的监控、分析。具体来说,本平台将实现以下功能:
舆情发现数据:通过对自媒体信息的收集和筛选,及时发现和掌握网络舆情的热点和趋势。
舆情处置数据:通过对网络舆情的分析,实现对网络舆情的及时引导和处置。
违规属地数据:通过对自媒体信息的监管和分析,发现和打击网络犯罪和网络不良行为。
媒体传播数据:通过对自媒体信息的传播路径和影响范围的分析,了解和掌握网络舆情的传播规律和影响效应。
举报信息数据:通过对用户举报信息的收集和处理,及时发现和处理网络不良信息和网络违法行为。
网评数据:通过对自媒体信息的情感分析和观点挖掘,了解和掌握用户对某一事件或话题的评价和态度。

本研究的意义在于,通过对自媒体舆情的监控和分析,实现对网络舆情的准确预警和引导,为政府和企业提供更加、准确、及时的网络舆情管理方案,网络空间的健康有序发展。同时,本研究也可以为学术界提供更加丰富、准确、深入的网络舆情数据和研究案例,推动网络舆情研究的深入发展。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 自媒体舆情分析平台界面展示:
    自媒体舆情分析平台
    自媒体舆情分析平台-举报信息
    自媒体舆情分析平台-媒体传播信息
    自媒体舆情分析平台-违规属地信息
    自媒体舆情分析平台-舆情发现信息

四、部分代码设计

  • 自媒体舆情分析平台项目实战-代码参考:
try:
    # 实例化调度器
    scheduler = BackgroundScheduler()
    # 调度器使用DjangoJobStore()
    scheduler.add_jobstore(DjangoJobStore(), "default")


    # 'cron'方式循环,周一到周五,每天9:30:10执行,id为工作ID作为标记
    # ('scheduler',"interval", seconds=1) #用interval方式循环,每一秒执行一次
    @register_job(scheduler, 'cron', day_of_week='mon-fri', hour='12', minute='30', second='10', id='task_time')
    # @register_job(scheduler, 'interval', id='test', hours=0, minutes=1)
    def test_job():
        t_now = time.localtime()
        print(t_now)


    @register_job(scheduler, 'interval', id='test', hours=0, minutes=0, seconds=10)
    def test_two():
        CommentService.set_count()
        # get_scrapyd_cli().schedule('yu_qing', 'movie')
        t_now = time.localtime()
        print(t_now)


    @register_job(scheduler, 'date', id='tt')  # 只执行一次的非阻塞异步任务 这里可以写rabbitmq的消费任务
    # @register_job(scheduler, 'interval', id='test', hours=0, minutes=0, seconds=1)
    def test_rabbitmq():
        connection = pika.BlockingConnection(settings.rabbitmq_connection_parameters)
        channel = connection.channel()

        channel.queue_declare(queue='hello')

        def callback(ch, method, properties, body):
            print(" [x] Received %r" % body)

        channel.basic_consume(queue='hello', on_message_callback=callback, auto_ack=True)

        print(' [*] Waiting for messages. To exit press CTRL+C')
        channel.start_consuming()
        t_now = time.localtime()
        print(t_now)

        #
        # connection.close()


    @register_job(scheduler, 'date', id='yq_meituan_comment')  # 只执行一次的非阻塞异步任务 这里可以写rabbitmq的消费任务
    # @register_job(scheduler, 'interval', id='test', hours=0, minutes=0, seconds=1)
    def consumer_mt_yq_comment():
        connection = pika.BlockingConnection(settings.rabbitmq_connection_parameters)
        channel = connection.channel()

        channel.queue_declare(queue='yq.mt.comment')

        def callback(ch, method, properties, body):
            result = json.loads(body)
            for key, value in enumerate(result):
                ota_spot_id = value['ota_spot_id']
                review_id = value['review_id']

                user_name = value['user_name']
                user_url = value['user_url']
                comment = value['comment']
                pic_urls = value['pic_urls']
                comment_time = value['comment_time']
                reply_cnt = value['reply_cnt']
                zan_cnt = value['zan_cnt']
                read_cnt = value['read_cnt']
                user_id = value['user_id']
                star = value['star']
                menu = value['menu']

                CommentMeituan.objects(ota_spot_id=ota_spot_id, review_id=review_id).update_one(
                    set__user_name=user_name,
                    set__user_url=user_url,
                    set__comment=comment,
                    set__pic_urls=pic_urls,
                    set__comment_time=comment_time,
                    set__reply_cnt=reply_cnt,
                    set__zan_cnt=zan_cnt,
                    set__read_cnt=read_cnt,
                    set__user_id=user_id,
                    set__star=star,
                    set__menu=menu,
                    upsert=True
                )

        channel.basic_consume(queue='yq.mt.comment', on_message_callback=callback, auto_ack=True)

        print(' [*] Waiting for messages. To exit press CTRL+C')
        channel.start_consuming()
        t_now = time.localtime()
        print(t_now)


    # 监控任务
    register_events(scheduler)
    # 调度器开始
    scheduler.start()
except Exception as e:
    print(e)
    # 报错则调度器停止执行
    scheduler.shutdown()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103

五、论文参考

  • 计算机毕业设计选题推荐-自媒体舆情分析平台-论文参考:
    算机毕业设计选题推荐-自媒体舆情分析平台-论文参考

六、系统视频

自媒体舆情分析平台-项目视频:

大数据毕业设计选题推荐-自媒体舆情分析平台-Hadoop

结语

大数据毕业设计选题推荐-自媒体舆情分析平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/人工智能uu/article/detail/798854
推荐阅读
相关标签
  

闽ICP备14008679号